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$. F. Shen

N67144o 
Basic Fluid Dynamics

I. Introduction. In attempting to survey basic fluid dynamics in a

program dedicated to the field of applied mathematics in space prob-

lems, the foremost question is to settle upon what should be meant

by the word "basic". To this end, Professor Goldstein's admirable

monograph [1] has provided a valuable guiding principle. Our en-

deavor in the following, however, is different from an abbreviated

version of Goldstein's book, and reflects somewhat the aerodynami-

cist's view point. After the formulation of the general equations of

motion, the emphasis is mostly on the motivation and derivation of

the different approximations whichfind applications in various prac-

tical problems, particularly to bodies in flight at-the higher speed

ranges typical of space activities. Much material of basic and mathe-

matical interest is unavoidably left out, as are the full details of

the solution of any specific problem. In their places, we choose rather

to illustrate, ever so briefly to be sure, how the theory has been

exploited in the explanation and prediction of complicated physical
phenomena.

Since most of the coverage is "basic", therefore contained in the

well-known treatises such as those of Lamb [ 3] and Milne-Thomson

[4], as well as Goldstein's book mentioned above, we have refrained

from giving references except in rare instances.
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II. Description of fluid motion. The fluid medium we work with

shall be a continuum which, although somewhat idealized, should

approximate the real gas of interest, namely air, in its behavior.

Fluid dynamics then deals with such a gas in motion with or without

the presence of solid boundaries. The state of gas in equilibrium, as

when enclosed in a stationary and insulated vessel, is described by

two thermodynamic variables, say density p and temperature T; and

any other thermodynamic variable can be expressed in terms of p

and T. In particular, we often desire to know the pressure p of the

gas, observable as the normal force per unit area acting on the wall.

The relation may be written as

(II.1) P -= P(o, T)

and is usually referred to as the "equation of state". Under the as-

sumption of a perfect gas, Equation (II.1) becomes explicitly

(II.2) p = pRT

where R is the gas constant, depending only upon the molecular

weight of the gas.

When a body of gas is in arbitrary motion, it becomes necessary

to regard the body of gas as composed of a large number of fluid

elements, which must be small enough to represent the details of the

fluid motion, yet not so small as to exhibit the coarse nature of the

molecular motion. A velocity Y may be assigned to each fluid ele-

ment, and an observer riding with the fluid element may now deter-

mine the density and temperature of the gas in the fluid element.

The pressure p follows again from Equation (II.1). If we trace the

changes of p, p, T, V with time for each fluid element, the result is

the "Lagrangian description" of the fluid motion. Alternatively, it

is often more convenient for analysis to use a field representation

by examining the flow pattern, i.e., the functions

p(r, t), o(r, t), T(r, t), V(r, t)

where r designates the location of the fluid element at the given

time t. This is now the "Eulerian description" of the fluid motion.

In the Eulerian description, the rate of change of any property Q

of a given fluid element is usually written as DQ/Dt. Hence if Q is

expressible as Q(r, t), we have



BASIC FLUID DYNAMICS 3

D
D-t Q = lim [Q(r + Ar, t+ At) -- Q(r, t)]/At

at--d)

(II.3) = lim [ Q(r + VAt, t + _t) -- Q(r, t)]/At
Ate0

For example for given V(r, t), the acceleration of the fluid element

is equal to DV/Dt. However, sometimes Q may not be given as a

field, then a direct evaluation is necessary. To illustrate the latter,

let Q be the volume 5T of a fluid element, and define the "dilatation"

as the rate of volume change of the fluid element, per unit volume:

(II.4) 0=lim 1 (Dtl}T)_o _T

If _T is bounded by surface S and n is the outward unit normal on

the surface element dS (See Figure 1), clearly by definition

0= lira( V.ndS/ST
5r--_0 JS

(II.5)
= div V.

Of considerable interest in the Eulerian description of fluid motion

is the "streamline pattern", showing the direction of motion of each

fluid element at a given instant. The "streamlines" are defined by

(II.6) dr, × V = 0,

where dr, is a length element on the streamline. If the flow pattern

does not vary with time, the fluid motion is said to be a "steady

flow". The streamlines in such cases coincide with the trajectories of

the fluid elements.

n

FIGURE 1. Dilation.
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Aside from the translational motion of the fluid element, we must,

of course, also expect in general a rotational motion as well as a

change of shape with time. The angular velocity of the fluid element

turns out to be one half the "vorticity", _, which is defined through

a given velocity field V(r, t) as

(II.7) m - V × V.

Following Equation (II.6), we may then look at the vorticity pattern

by introducing "vortex lines" analogous to the streamlines,

(II.8) dr_ × _ = 0

where dr_ is a length element on the vortex line.

III. Equations of fluid motion. The equations of fluid motion ex-

press the requirements that the fundamental laws of the conserva-

tion of mass, momentum and energy must not be violated. These

can be very simply stated if the Lagrangian description is adopted.

Consider a small fluid element of volume dr; its mass will be pdr. For

generality we introduce a "mass source" rn such that mass is being
added to the fluid element at the rate of rhdr. Then the law of con-

servation of mass as applied to dr states that

D
(III.1) D---tpdr = Fndr.

In Lagrangian sense, the left-hand side is an ordinary time deriva-

tive of a product, and we may write

Do D

dr _ -t- p _ dr =
mdr.

By using the definition of the dilatation 0, Equation (II.4), to evalu-

ate Ddr/Dt, the result may be rewritten as

Dt + po =(III.2) rn

which is known as the "equation of continuity". When p, V and rn

are regarded as field quantities in Eulerian description, we only need

to interpret the terms in Equation (III.2) according to Equations

(II.3) and (II.5).

For the momentum pVdr and energy pEdr (E, being defined as the

energy per unit mass of the fluid), equations similar to Equation

(III.1) may be written with a "momentum source" P and an "energy
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P

5

FIGURE 2. Stress.

source"E, respectively,on the right-handside.The same manipu-

lationyields

DV
(III.3) p _ = P - thV

and

DE = E --thE.
(III.4) p -_-

Again,althoughderivedfrom the Lagrangiandescription,Equations

(III.3)and (III.4)offerno difficultyin interpretationforthe Eu-

leriandescription,providedrn,P and E are givenasfieldquantities.

We restrictourselvesin the followingto the case of rh_-0. To

proceedfurtherwiththeterms P and E,itwillbe assumed thatthese

areonlydue tothe interactionsbetween adjacentfluidelements,and
thatthe basicfluidpropertiesare isotropic,nan_ely,invariantwith

orientation.For P, experienceshows that any nonuniformity of

motion causinga change of shape ofthe fluidelement would be re-

sistedby the fluidthrough the development of internalstresses

between fluidelements.For E, experienceshows that heatwillflow

through the boundary of the fluid element if a nonuniformity of

temperature exists. In addition, the stresses acting on the boundary

perform mechanical work on the fluid element.
Consider now a fluid element 5T within the surface S. On a surface

element dS, let n be the unit outward normal and F the resultant
stress vector (see Figure 2). Referring to a set of Cartesian coordi-

nates xi, i = 1, 2, 3, these have components ni and Fi, respectively.
It is then convenient to introduce a stress tensor T/j such that

(III.5) Fi = rijrtj.
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In Equation (III.5) and hereafter, the customary convention of sum-

ming over a repeated subscript will be understood. Since rij includes

the pressure which is present even without fluid motion, we may

separate rii into two parts:

(111.6) rij = r_j -- P_ij (_0 ----O, i _ j; 6i_= 1, i = j),

the negative sign indicating that the pressure is always opposite to n.

The tensor r'j is the "viscous part" of rij, and remains to be related

to the nonuniformity of the fluid motion.

If the nonuniformity of the fluid motion is slight, it may be char-

acterized by the first derivatives of V with respect to the space

variables at the point under consideration, hence the tensor OuJ axj.

Splitting Oui/Oxj into symmetrical and anti-symmetrical parts, we

have

aui
-- eij -_- wO,

(III.7) eij---- _ k axj + Ox#'

l(Oui Ouj_,_i_= _ OX_ Oxi/ "

The anti-symmetrical part _0ij is easily seen to be

(III.8) wit = - 2_ijkwk

where *ok is the component of the vorticity _0 defined by Equation

(II.7) and *ijk is the alternating symbol,

*ij, = 0 when the subscripts are not all different;

= 1 when i, j, k follow the cyclic order 1, 2, 3;

--- - 1 when i, j, k do not follow the cyclic order 1, 2, 3.

Thus 000 represents the nonuniformity due to a rigid rotation of the

fluid. The change of shape of the fluid element as it moves along is

entirely represented "by the symmetrical tensor e0. To proceed fur-

ther, the "viscous hypothesis" is made that r[j should be linearly

proportional to e o, i.e.,

rb = Cii,le,l,
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Cii_ being constants. Now the physical law must not be affected by

the orientation of Xl, x2, x3 in an isotropic fluid. Then (see [2, p. 70] )

there must be

Ci_ = _j_ + _(_k_, + _k_u)

where h and # are constants. Hence

(III.9) ' -Tij -- kSije_ -_ 21.teij

where obviously e_ = V • V.

There are then normal viscous stresses rh, r_2, r_. Summing the

three, we have

Ti'/= (3X -t- 2tt)eii.._

Thus, like pressure p, the average of the normal viscous stresses is

independent of the axes. It is however proportional to the dilatation,

and the coefficient 3_, A-2_ is referred to as the "bulk viscosity

coefficient". For monatomic gases, kinetic theory shows that

2
3_A-2_=0 or _,=-_.

This result is generally assumed in most applications involving air

(even though it is composed of primarily diatomic gases) so that the

viscous stresses are all proportional to a single material constant,

the "viscosity coefficient". Equation (III.9) becomes

2
(III.9') r_j _-- -- -_ Iz_ijekk -1- 21.teij

known as the "Navier-Stokes relation". It may be noted here that

the viscosity coefficient is mainly a function of the temperature T.

We next turn to the heat flux due to the nonuniformity of the

temperature field. Since T is a scalar, the nonuniformity is charac-

terized by a vector V T. If q is the heat flux vector (the rate of heat

flow per unit area), the assumption of linear dependence leads in an

analogous manner to

(III.10) q= - k V T

where the proportionality constant k is the "coefficient of thermal

conductivity". Equation (III.10) is known as the "Fourier law".

From a molecular viewpoint, both _ and k owe their origin to the

random motion of the molecules, and these two are closely related.
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For example, for monatomic gases,kinetic theory predicts

2k = 5_Cv

where C, is the specific heat at constant volume.

With Equations (III.9') and (III.10), it is now possible to repre-

sent P and E explicitly. For P, there is

Pier =fs FidS

by Gauss' Theorem: or, as ST-_ 0,

a

(III.11) P, = _ Tij -

For E, there is

E_T= fs F. VdS+fs s n.kVTdS

=-fss(T,iu,-t-kCgT_njdS
axe�

a [_iiu, A-k°TldT

where ui is the component of V in the xi-direction. As Sr-_ 0, it fol-
lows that

O (_,iu,)+ O (kOT)(III.12) _: = O---_ _// _x_x1 "

Hence, with Equation (III.11) the momentum equation, Equation

(III.3), becomes finally

Oui_ Op Txj(III.13) P Dt Ox_ + r_j.

In the energy equation, Equation (III.4), we note that for the fluid
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element in motion,

1
E=U+_V _

where U is the internal energy of the fluid element. Together with

Equation (III.12), Equation (III.4) after simple manipulation be-

comes finally

Dv 0 (k0r 
(III.14) P DT = - pe_i + r[ieij W _ \ -_jxj/ "

The second term of the right-hand side clearly represents the work

done by the viscous stresses, and often is defined as the "dissipation

function" ¢. It may be easily verified that ¢ > 0 when .r[j is given

by Equation (III.9').
Alternative forms of the energy equation, Equation (III.14), are

sometimes useful. For instance, in terms of the entropy S, since by

thermodynamic definition

the continuity equation, Equation (III.2) (with rh = 0), and Equa-

tion (III.14) combined lead to

DS 0 (h0_r 
(III.14') pT-_- = ¢ + _ \ Oxff "

In terms of the enthalpy h, since by thermodynamic definition

h=u+P-,
P

Equation (III.14) may also be replaced by

Dh Dp+¢+ O(kOT )(III.14") PD-/= 0-7 _i _ "

IV. Physical boundary conditions of fluid motion. The fluid motion

has been defined in the above through the unknowns p, p, Tand V,

which are required to satisfy Equations (II.2), (III.2) (with m -- 0),

(III.13) and (III.14). A typical problem is to find the resultant fluid

motion when an obstacle moves through the fluid in a prescribed

manner. In the fluid domain, there remains the question of relating
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the values of these unknowns for the fluid elements in contact with

the obstacle with the prescribed motion and properties of the ob-

stacle itself. We may think of Equations (II.2) and (III.2) as de-

finingp and p in terms of Y and T, so Equations (III.13) and (III.14)

are really the equation to be integrated. Thus, if the obstacle is im-

permeable and represented by the surface Fs(xi, t) -- 0 and its tem-

perature by the condition T = Ts(t) on Fs -- 0, we are interested to

assign values of V and T for the fluid elements satisfying Fs = O.

Now the resultant velocity of a point on the. obstacle must satisfy

DFs/Dt = O. Since the obstacle is assumed to be impermeable, the

velocity of the fluid element at the same point must have the same

velocity component normal to the surface, and therefore satisfy also

DFs/Dt = 0, although the tangential velocity is still arbitrary. We

refer to this as the "condition of no penetration", or

DFs _ 0 for fluid elements on Fs = O.
(IV.l) Dt

Obviously by the same reasoning, Equation (IV.l) is also the con-

dition at the interface between two dissimilar fluids.

As for the tangential component of the fluid velocity and the tem-

perature of the fluid element at the boundary, one usually appeals

to experience whenever the mathematical solution requires these

data. Ordinarily it is assumed that the fluid element shall have

neither a relative velocity with respect to the boundary--the "con-

dition of no slip", nor any temperature differences from that of the

boundary--the "condition of no jump". These are confirmed as first

approximations by kinetic theory considerations, so long as the gas

is not too tariffed.
The precise conditions under which the mathematical problem

will be "properly set" is in general a difficult question because of the

complicated nonlinear nature of the equations. The practice is ra-

ther to look for a solution when physically the problem is well-

defined and can be set up in an experimental investigation.: However,

it should be noted that empirically under seemingly indentical con-

ditions the observed flow may be either "laminar" or "turbulent".

Take the steady flow through a circular pipe as an example: A

mathematical solution of the equations predicts that the flow should

move in layers; this is indeed well confirmed experimentally, but

only if the flow velocity is relatively small. At higher velocities, the

actual flow is composed of a steady mean motion superposed by
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random time-dependent fluctuations. This phenomenon is typical

rather than exceptional. It strongly suggests that the general unique-

ness condition for the system of equations describing fluid flow

would be extremely difficult to lay down.

V. Rotational and irrotational motions. We defined in Equations

(II.7) the vorticity vector

_=VXV

representing the rigid body rotation of the fluid element. Kinemat-

ically, the fluid motion may be classified as rotational or irrotational

depending on whether _ _ 0 in general or _ = 0 everywhere in the

fluid. We note first that because _ is the curl of V, it is a solenoidal

vector, i.e., V • _ = 0. Now if we have a steady flow field with m = o,

the equation of continuity, Equation (III.2), reduces to V. (pV)

= 0. Thus by analogy it can be said that _ also satisfies an "equation

of continuity". Let a contour C enclosing a surface S be drawn in

the fluid (see Figure 3). Vortex lines can be passed through points

of C to form a "vortex tube", and the following must hold:

f widSi= f, widSi

where S' is the area enclosed by C' anywhere downstream along the

vortex lines from C. In particular, by taking S--* O, the vortex tube

becomes a very thin "vortex element". Thus a vortex element can

never end within the fluid. It may, however, form a closed loop.

!

FIGURE 3. Vortex Tube.

If the fluid motion is an irrotational motion, by applying Stokes'

theorem to the contour C,

_c V'dl= fss widSi=O.

Consequently a "velocity potential" ¢ exists such that

V=V_.
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Since a scalar ¢ defines the velocity vector, the mathematical prob-

lem is then to find the solution for a single function _ and becomes

much simplified. It is therefore of interest to examine the circum-

stances under which the irrotational approximation may be adopted.

With rh ----0, consider the momentum equation, Equation (III.3),

DV 1
P.

Dt p

Expanding DV/Dt, we have

DV 0V 1
(v.1) Dt - Ot -F2 VV2-V×w"

Hence, by straightforward manipulation and with Equation (III.2),

DV 0
V X - V XV-VX (Vxw)

Dt at

_ D_ (_. _7)V- -_ Dp
Dt p Dt

The "vorticity equation" follows immediately

D (_) = (_.V)V+I V X (1p)-- ,
(V.2) Dt p

We shall examine the behavior of _ under the following simplifying

conditions:

(1) p = p(p), e.g., p ¢_ p* for isentropic process (_ being the ratio

of specific heats), or p = const for incompressible fluid;

(2) g = 0, the inviscid approximation. Under the simplification,

Equation (III.11) gives P = - Vp, and since V X ((1/p)Vp) = V X

(V J" (dp/p)) = 0, Equation (V.2) becomes

or

).v v

D wi _ wi 0
Ui

Dt p p Oxj

= __i[% + wO].
P
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Noting Equation (III.8),

_j _ij = -- 2_iika_j_k = O.

We finally get

13

D _i__i
(V.3) Dt p p eli

which is sometimes interpreted as saying that following the fluid

element, _i/p changes due to the "stretching" of the vortices. In
particular, for two-dimensional motion _ = (0, 0, _a) but eaa= 0, so

that Equation (V.3) degenerates into

O _3 0

(V.4) Dt p

saying that the vorticity, strictly speaking _a/p, is attached to the
fluid element without change. Following Equation (V.4), as long as

p = p(p) and in the inviscid limit, if at some time the fluid element

does not possess vorticity it will not acquire vorticity in two-dimen-

sional motion. When the flow field is set up from rest through the

arbitrary movements of a two-dimensional body, we therefore expect

irrotational motion at all times. For the general three-dimensional

flow, the same conclusion can be reached by integrating Equation

(V.3) for a given fluid element (see [4, p. 84]). These are of course
only useful in practical cases when the underlying assumptions are

acceptable.

Let us now examine the role of viscosity. Consider for simplicity
the small perturbation from a state of rest, i.e., V = Y', _ = _',

p = p0+ p', etc., p0 being the density of the fluid at rest and primed

quantities being the small perturbations. After neglecting the quad-

ratic terms involving the perturbation quantities and with the help
of Equations (III.11) and (III.9'), Equation (V.2) is reduced to the

diffusion equation

0 ' = rove'
(v.5) _}

where ro = _o/po, the kinematic viscosity. If a vortex element is gen-
erated in an infinite fluid at t= 0 and maintained afterwards, the

consequence of Equation (V.5) is that the vorticity will spread out,

with decreasing strength, to occupy a region of size (_0t) in beyond

which the effect is essentially nil. This result is qualitatively useful in
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visualizing the flow patterns surrounding a body moving in a fluid

at rest. Suppose a thin two-dimensional plate of length L moves

parallel to itself in a viscous fluid at constant velocity Y (see Figure
4). An obvious irrotational solution is that the fluid is undisturbed,

satisfying all differential equations except for the viscous "no-slip"
and "no-jump" conditions at the surface. We imagine viscosity to

be absent for t < 0, but suddenly turned on at t = 0. The fluid ele-

ments in contact with the plate will be instantaneously arrested,

creating a surface of discontinuity which may be interpreted as a
vortex sheet composed of concentrated vortex elements. The vorti-

city subsequently spreads out approximately at a rate O(x/(vo/t)).

X2

/\ .....
_'-->l< L _l XI

FIGURE 4. Moving Plate.

To an observer fixed relative to the plate, the instantaneous flow pat-
tern will be swept downstream at a speed equal to V and the vorti-

city will be seen as essentially confined in a region roughly parabolic

starting from the leading edge of the plate, the thickness 5 reaching
a value 0( V/@oL/ V)) at the end of the plate. In nondimensional
form, we have therefore

_ 0(1/x/(Re))
L

where Re --- VL/vo, the "Reynolds number" based on the length L.

There would be furthermore a disturbed region ahead of the plate
of size 5', given by

_' _ O(x/(_0_'/V))

or, again in terms of a Reynolds number, Re_, --- Vs'/vo _ 0(1). Thus
the size of the region of rotational flow because of the viscous effects

is confined to the immediate neighborhood of the plate as v0--* 0. In
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fact, the thickness 6' tends to zero much faster than the thickness 6.

The layer of 0(6) adjacent to the body is referred to as the "bound-

ary layer". The viscous and rotational region swept behind the body

is the "wake". Outside of the thin boundary layer and the wake, the

flow is seen to be essentially irrotational. For blunt bodies these

qualitative descriptions remain valid, but although the boundary

layer thickness is still proportional to V'v0, the wake will be of the

order of the body thickness (see Figure 5). It should be mentioned

that rotationality may also be present due to curved shock waves

which form ahead of the body when it moves at high speeds. (See

§X). This is an example where p = p(p) is not true.

16

,_ wake

FmURE 5. Moving Blunt Body.

Finally we note that the boundary layer and the wake are actually

the corrections to an inviscid solution due to the viscous boundary

conditions. Consequently outside of these regions whether the flow

be rotational or irrotational, the fluid may be regarded as inviscid.

As the kinematic viscosity of gases is usually very small, in most flow

problems the Reynolds number will be large and the boundary layer

will be relatively thin. Then the inviscid "no penetration" condition

may be applied without serious error as if the boundary layer were

absent. The difficulty of the unknown boundary of the wake, how-

ever, cannot be circumvented in constructing an inviscid approxima-

tion for blunt bodies.

VI. The inviscid approximation. Let us now exploit the inviscid ap-

proximation. Since the viscosity u and the thermal conductivity k

are of the same mechanism, the fluid should also be regarded as

nonheat-conducting in the same approximation. The immediate con-

sequence from Equation (III.14') is

DS
-0

Dt
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i.e., the entropy is constant following each fluid element, though

not necessarily throughout the flow field. The "Navier-Stokes' equa-

tions", Equation (III.13), degenerate into the "Euler equations"

DV
(VI.2) P Dt Vp.

The continuity equation, Equation (III.2), of course is unaffected:

(VI.3) Dp
_t+PV.V= O.

Consider again a small perturbation of the fluid from rest at pres-

sure P0 and density p0. Neglecting quadratic terms of the perturba-

tion quantities g', p' and p', we get the "acoustic theory" from
Equations (VI.1--3):

S = So, const.,

po_ = - Vp',(VI.4)

1__ Op' V"
po 0--{ + V " =0.

The first of these may alternatively be expressed as

P/Po = (p/po) _, "Y= C,/Co,

(VI.5) or
p' = a2p ,

where a -- v/(Op/Op)s = V'(_'Po/po), the "speed of sound". Elimina-

ting p' and V' in favor ofp', we find

0 2
(VI.6) -- p' - a 2V 2p, _- 0

Ot2

which is the "wave equation". The elementary solution for introduc-

ing a small disturbance at a point at t = 0 is such that the disturb-

ance spreads out in space at a rate equal to the sound speed "a",

and beyond a radius of at the fluid is undisturbed. For a source of

disturbance moving at constant velocity V, to an observer fixed to

the source of disturbance, two different flow patterns result de-

pending on the "Mach number" M - Via (see Figure 6). For M < 1

the disturbance spreads out in all directions, eventually swallowing

up the entire space in a long enough time. For M > 1, the disturbed
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region is conical, formed by the envelope to the drifting spheres,

with the vertex at the source of disturbance, the semi-angle being equal
to the "Mach angle" sin-11/M. The conical surface itself for finite

time, in conjunction with the spherical surface in the back, is the

wave front separating the undisturbed and the disturbed regions.

M<I

/

------>i "

M>I

sin-ll / M

FIGURE 6. Acoustical Flow Patterns.

Following yon Kfirm_m, one may refer to the undistrubed region

ahead of the conical surfact as the "zone of silence", and the dis-

tuibed region behind as the "zone of action". While the above is

based upon ]inearized small perturbation theory, the difference in

behavior of subsonic and supersonic flows remains qualitatively the

same even if the disturbances caused by the moving object are no
longer small.

Without restricting ourselves to small disturbances, we return to

Equations (VIA) to (VI.3). In certain cases, a first integral of the

Euler equations, Equation (VI.2), can be directly obtained, which

will further simplify the problem of finding a solution. By Equation

(V.1), Equation (VI.2) may be written as

a_V 1 V 2 1
at +_V -- VX_=---Vp. p

Now the definition of entropy S is, for a given element, TdS = dh

- (1/p)dp. But inasmuch as T and p are always expressible as func-

tions ofp and h, this expression may also be regarded as an ordinary

differential relation defining S(p, h), hence leading to

TV S = Vh- 1 V p.
P
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B

A

FIGURE 7. Streamline.

We define next a "stagnation enthalpy" H,

1 V2
H=-h+_

and recast Equation (VI.2) into

(VI.7) 0
0-7 V + VH- TVS = V X ,o.

For the special ease of steady flow, (O/Ot)¥ = 0, Equation (VI.7) is

known as "Croeeo's theorem", showing for instance that vortieity

would arise due to entropy gradient. If Equation (VI.7) is dotted

into the length element dl along a streamline, at given t (see Figure

7), and then integrated between the end points A and B, the result
is

V.di+ dH- a TdS=O.

This yields the so-called "Bernoulli's equation" in the following

cases:

(a) For steady flow (O/Ot = 0), DS/Dt = V • VS = 0, hence V and

dl are both normal to VS. Consequently

(VI.8) H = const, along any streamline.

(b) For irrotational flow with uniform entropy everywhere ("ho-

mentropic"). V =V¢ and _7S = 0, hence

00 + H = const, along any streamline.
(VI.9) 0--/

When the streamlines can always be traced to a region of steady

uniform flow, the constant in the right-hand side of Equation (VI.8)

or (VI.9) becomes identical for all points in the flow field.

We next proceed to derive the equation for the velocity potential
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¢ in an irrotational homentropic flow. The scalar product of V with

Equation (IV.2) leads to

a V 2 1 a 2
+ _(v.v)v _= - --v.vp

Z P

= lp _+pV .V ,

by Equation (VI.3). But differentiation of Equation (VI.9) gives

a 20p 0 V 2 02¢

7 o-i + o-7-y + _ - =o.

Eliminating ap/at between the two expressions, we get

02¢a _+___
(VI.10) O-t at 2

y_
a2V.V-kV-V -_-=0.

In Cartesian coordinates, Equation (VI.10) may be written as

¢_ _ (a 2 _ ¢2)¢= _ (a 2 _ Cy2)¢yy_ (a 2 _ ¢_)¢=

(VI.10') + 2(¢xCy¢_y -F ¢x¢_¢= -4- ¢y¢_¢_

+ ¢x¢=+ ¢y¢,+ ¢z¢_) = 0.

Here a 2 is expressible also in ¢ by noting that

(VI.11') H= 7 p+ V 2 _ a 2 V 2
_-_- 1 _ 2 _-1+_ -

while Equation (VI.9) shows that H is directly related to 0¢/0t. It

is, however, more instructive without explicitly evaluating a2. To fix

ideas, suppose we have a body of characteristic length L, character-

istic velocity V® in an unsteady motion of characteristic time t®. We

assume that generally a _ O(a®), a® being the characteristic sound

speed. Then in Equation (VI.10') appear the dimensionless para-
meters

Mach no. M® - V®/a®

and

Strouhal no. _ -= L� V® t®.

If _ _ 0(1), as MR --- 0 the equation reduces to the Laplace equation

(VI.12) V2¢ = 0.
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z

r x

FIGURE 8. Moving Thin Body.

Equation (VI.12) constitutes the (inviscid) "incompressible approxi-

mation" since the equation can also be directly obtained by setting

Dp/Dt--- 0 in the equation of continuity and then using V= _7¢.

The velocity potential now may be solved from the prescribed nor-

mal derivative of 0 on the body surface (to satisfy the condition

of"no penetration"). After 0 is obtained, Bernoulli's equation, being

an integral of the momentum equation, determines the pressure
field which simultaneously must co-exist. We shall not discuss the

various techniques of solving Laplace's equation.

VII. Small perturbation theory for the steady flow over thin bodies.

To illustrate the behavior of the solution of Equation (VI.10') when

the incompressible approximation is not applicable, consider a uni-

form stream of velocity V® in the x-direction flowing over a fixed

thin body lying close to the x, y-plane (see Figure 8). For sufficiently

thin bodies, the uniform stream will only be slightly disturbed, and

we put the resultant velocity potential as the superposition of that

for the uniform stream and a small perturbation, i.e.,

f •

¢= V®x+¢', ¢',_y,¢_<<V®.

For the steady case Equation (VI.11) further becomes

(VII.l) a 2 -- a 2 _ 7 -- 1 (V_ -- V2).
2

After substituting the above into Equation (VI.10') and retaining
only linear terms in ¢•, we get

(VII.2) (i 2 , ,-- M®)¢,_ + ¢_v + ¢v" _-- 0

provided Jl -M_J _ 0(1). By a simple stretching of the coordi-
nates
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x'=x/ lX-M l, Y--y, z'=z,

Equation (VII.2) reduces to

4- $_,_,+ $;,y+ ,_ = O,

the "±" corresponds to M 2 _ 1. Thus the subsonic flows all satisfy

Laplace's equation while the supersonic flows satisfy the wave equa-

tion. In fact, by examining the transformed boundary conditions

in the new coordinates, it follows readily that flows over a class of

bodies at different Mach numbers can be related to each other.

The interpretation of a known flow over a given body and Mach

number as that for a different body at a different Mach number is

referred to as the "similarity rule". In subsonic flows, such is known

as the "Prandtl-Glauert rule", in supersonic flows, the "Ackeret
rule".

The linearized theory, Equation (VII.2), fails when some of the

neglected terms become comparable with those retained. If we evalu-

ate the neglected terms, it may be verified that the above lineariza-

tion implies

(i) a2 - ( V® 4- 0k) 2 ._ a2 _ V 2>> V® qb_or V. qbzp

(ii) a _.. a® >> O_, $;.

The condition (i) breaks down where a 2 - V 2, or M 2 --_ 1, i.e., in

"transonic flows". The condition (ii) breaks down when a® << V®,

or M® >> 1, i.e., in "hypersonic flows". In both transonic and hyper-

sonic cases, then, we are forced to nonlinear theories even for small

perturbations.

Let us demonstrate briefly the complications of the transonic

approximation. If V® -- a®, it is convenient to consider the flow over

a thin body as small perturbations on a uniform sonic flow (V® = a ®

= a*, say) without the body. Thus putting

$ = a*x 4- $'

and rewriting Equation(VII.l)

a2= 74-1a,__ 3'- 1V2_a,2 3'- 1(2a* $,)+...,
2 2 2

we get from Equation (VI.10') after retaining all quadratic terms,

- ('r 4- 1)$" $'.. 4- a*(,l,_, 4- 4/) - 2(4,_$_ 4- _; 4,') = O.
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The essential features remain unchanged by restricting ourselves to

two-dimensional motion in the x, z-plane:

- ('y + 1)4_'_'+a*ey- 2_b'¢'z = 0.

Here one or both of the quadratic terms must be everywhere of the

same order as the term a* ¢'. In order to do so, clearly the function

_' must vary much more rapidly in the x-direction than in the z-

direction. Hence the first term should dominate, and the "transonic

equation" for two-dimensional steady flow finally reduces to

(VII.3) - (_-}- 1)_" ¢'_-a*¢',, = O.

The "similar rule" for relating the transonic flows over geometrically

similar bodies of different thickness to each other was deduced by

von K_rm_n.

In analogous manner, the nonlinear perturbation equation for

the velocity potential and the similarity rule in hypersonic flow

have been given by Tsien. However, strong curved shocks inevitably

occur in hypersonic flow, and the flow behind the shock and over

the body is generally rotational. Tsien's equation therefore loses

much of its significance. On the other hand, if we plot Equation

(VII.l) (see Figure 9), in hypersonic flow the sound speed a and the

resultant velocity V will always be in the region near the maximum

velocity V_

V_,_= V_ 1+ (_,_I)M_ "

For considerable variation of the local Mach number, the resultant

velocity V is essentially unchanged. In addition, the streamlines

a ..

V V_.

FIGURE 9. Plot of Eq. (VIII. 1).
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around thin bodies are always only slightly inclined. Consequently,

it is obvious that the perturbation velocity u' << v', w'. Neglecting u'

completely, the steady flow pattern in the y,z-plane at different

streamwise stations x can be interpreted as the unsteady flow pat-

tern in the y, z-plane at successive times, the elapsed time at between

two stations Ax apart being given by At _ ax/V®. This is the essence

of Hayes' "equivalence principle", which holds regardless of whether

the flow is rotational of irrotational, or whether any shock wave oc-

curs at the nose of the body. It simplifies the problem of hypersonic

steady flow over a thin body by reducing it to an unsteady flow over

a body of lesser dimension.

VIII. One-dimensional unsteady flow and the formation of shock. We

now return to Equation (VI.10') but restrict ourselves to one-dimen-

sional unsteady flows,

(VIII.l) 4,_ _ (a 2 _ 4,2)4,= + 24,x4,_ = 0.

According to the theory of quasi-linear partial differential equations,

this equation is hyperbolic, just as in the acoustic approximation,
since the discriminant

(24,x) 2 q- 4(a 2 - 4,_) = 4a 2 > 0.

Thus there exist real characteristic curves, along which the values of

4,xand 4,t may be described without uniquely determining the higher

derivatives 4,=, 4,6, 4,u. Let the running variable along such a char-

acteristic curve be a. For prescribed 4,x and 4,t along the curve, the

following must hold

(VIII.2)
4,x. = 4,=x, + ant,,

4',, = 4,t_x, + 4,a t_ .

We normally should be able to solve 4,=, 4,6 and ¢_ from Equations

(VIII.l) and (VIII.2), except when x, t, are such that the matrix

1 2¢_ -(a 2-4,_) 0

Jt_ x_ 0 4,to

0 t_ x, 4,x_



24 S.F. SHEN

has rank 2. Hence, to require that the curve be a characteristic

or

(VIII.a)

i 2_bx --(a2--¢_)

t, x, 0

0 t, x,

=0

dx x.
= gpx--I--a,

dt t,

giving the direction of the characteristics. Also

or

(VIII.4)

1 -- (a 2 -- ¢_)

t. 0

0 x,

0

¢,t.= 0

¢,,,= ¢_( - ,#,_,± a),

givinga conditionon the variationof@x and Ctalong the character-

istics.Thus we have two familiesof characteristics,which may be

referredtoastheC± curves,respectively,accordingto the sign"±"

inEquations (VIII.3)and (VIII.4).

X

B

A

D

FIGURE 10.Domain ofDependence.

By usingtheBernoulliequation,Equation (VI.9),the sound speed

"a" may be relatedto0x and Ct.Ifinitialdata are prescribedalong

an ordinarycurve (notcoincidentwith eithercharacteristic)in the

x,t-plane,itisknown thatthe characteristicsrelationsEquations

(VIII.3)and (VIII.4)uniquelydeterminethe solutionin the curvi-

lineartriangleABD, bounded by the characteristicsC+ and C_
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through A and B, respectively (See Figure 10). The segment AB is

the "domain of dependence" for point D. Likewise, if data are mod-

ified along a segment A' B', the solution in the shaded region shown

in Figure 11 will be affected and is the "range of influence" of the

segment A' B'. Moreover, the higher order derivatives normal to a
characteristic may be discontinuous. Consequently, a characteristic,

and a characteristic only, can serve as the boundary between regions
of constant state and variable flow, provided Equation (VIII.l)

holds everywhere.

BA'

FIGURE 11. Range of Influence.

Now, by differentiating the -Bernoulli's equation along a charac-

teristic, there follows

2a

_ ÷ _,,+ _-Z__1 ao-- 0.

Because of Equation (VIII.4), this reduces to

+,,+ -_a --0.7

Thus, if we define the "Riemann invariants" r and s as

(VIII .5)

1 a

1 a
s= _ _'-1'

it follows that

r=r(a), s=s(fl)

where a = const along the C+-curves and _ = const along the C_-

curves. (The running variable a becomes/_ along C+ and a along C_.)
Equivalently, since by Equation (VIII.3)
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we have

x¢/t_ = 4_ + a, x./t_ = ¢_ -- a,

Or Or

0--/ + (a + ¢x) Ox = 0,

(VIII.6) Os Os

0---[+ (- a + ¢x) _-_ = O.

The property r is thus propagated forward without change at the

local sound speed relative to the fluid, while the property s is propa-

gated backward without change at the local sound speed relative to
the fluid.

It is clear that in general a region in the x, t-plane may be mapped

to a region in the r, s-plane through one-to-one correspondence.

However, there are degenerate cases of basic interest. If the flow

is in a constant state r = ro, s = So in a given region in the r, s-plane,

this region will be mapped to only a point in the r, s-plane. There

may also be regions in the x, t-plane which map into a line r = ro

(or s = So) in the r, s-plane. The latter case represents motions

referred to as "simple waves".

In "simple waves" since the whole region maps to the line r = r0,

say, all the s-characteristics (C_-characteristics) become points along

r = r0. Back in the x, t-plane, then, along a C_-characteristic s = sl,

say, we have

r=r0, S=Sl,

hence Ct and _ must be constants. The C_-characteristics in the x, t-

plane therefore will be straight lines.

Let us now consider the flow which is of constant state in a region

of the x, t-plane. This region is mapped to a point (r0, So), say, in

the r, s-plane. The boundary between this region of constant state

and the adjacent region of variable flow must be a characteristic,

say s = So. Now in the r, s-plane all the s-characteristics must start

from (r0, So). The next one s = s_ must be located along the line r = r0,

since along the boundary s = So the characteristics directions ex-

tending into the region of variable flow are still completely specified

by r --- ro. Thus the adjacent region of variable flow must be mapped
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FIGURE 12. Retracting Piston.

into the line segment (S0Sl) - along r = r0. The conclusion is: The flow

adjacent to a region of constant state must be a "simple wave". "Simple

wave" solutions consequently are instrumental in constructing solu-
tions containing regions of constant state.

Consider as example the problem of moving a piston in a long tube
filled with gas at rest. The bounding characteristic between the

region of gas at rest and the region of moving gas is now a C+. When
the piston is retracting, straight C+-characteristics can be con-

structed from the prescribed piston path, as in Figure 12 and the

flow completely determined. When the piston is advancing, however,

the C+-characteristics so constructed tend to intersect, as in Figure

13. At the intersection we have different values of r and a given So,

and the values of _x and Ct can no longer be solved.

The situation is further clarified by considering a slightly different

example. Suppose in a long tube of gas at rest a certain portion is

disturbed to the state r0(x), So(X) at t-- 0. Subsequently, the dis-

turbance r0 moves to the right at velocity u -{- a, and the disturbance

So moves to the left at velocity u - a (see Figure 14). Let the dis-

t
• \'\

\\ .x C+

FmURE 13. Advancing Piston.



28 S.F.SHEN

u--a_-_

(So)

| I

' _ ' _u+a
! !

I, !

T pl - u_ + a(p_)

P_II-_-_ u,+a(p_)>

X

FIGURE 14. Propagation of Initial Disturbance.

turbance r0 have a density distribution at t = 0 as sketched.
Since

a(p) =x/ ('rp / p)_ p _,-,n

we know that da/dp > 0. Also, as the boundary between the dis-

turbed and undisturbed regions must be a C+-characteristic, the

simple wave solution for the forward propagating disturbance satis-
fiess = O, i.e., u/2 - a/(y - 1) = O. Heneedu/da > O. Thus ifp_ > p2

as sketched, we conclude: u_ > us and

Ul + a(pl) > u2 -}-a(p2).

The time history of the density disturbance profile will be as shown

in Figure 15, with progressive steepening of the "compression side"

of the disturbance (increasing density for the fluid element when

swept by the disturbance), and progressive flattening of the "expan-
sion side". Eventually it is seen that the simple wave solution must

necessarily break down when the profile develops a vertical slope,
since any further progress would require the crest to move ahead

of the foot, representing a multi-valuedness of the density which is

obviously not acceptable. This corresponds to the situation when
the characteristics of the same family intersect in the earlier ex-

ample.
What actually happens in such cases is that discontinuities in the

flow variables are developed. The boundary between the disturbed

and the undisturbed regions becomes a "shock wave", instead of a
characteristic. Without considering the dissipative mechanisms of

the viscosity and heat conductivity of the real gas, the shock wave
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t_ > tl

Pl t3>t2

FXGURE 15. History of Density Profile.

is of zero thickness across which finite changes in u and p take place.

But the basic conservation laws of mass, momentum and energy for

the fluid flow in crossing the shock wave must still be obeyed.

IX. Steady two-dimensional homentropic flows. If we specialize Equa-

tion (VI.10') to steady two-dimensional flows, the governing equa-

tion is

(IX.l) (a 2 - _b2)_=t 3t- (a 2 - _2)_byy- 2_br_y_y _- 0.

As in the previous section, to classify this equation, the discriminant

will be examined. It reads

=_4a [a 24_ _y - 4(a 2 -- _)(a s -- _)

Thus there are three possibilities:

(a) a2 - (_2 + _y2) > 0, i.e., the flow is everywhere subsonic, then

the equation is elliptic;

(b) a 2- (_b2 + _by2) < 0, i.e., the flow is everywhere supersonic,

then the equation is hyperbolic;
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(C) a 2 2 2-- (¢x + ¢y) changes sign in the flow field, which consists

therefore of both subsonic and supersonic regions, then the equation

is of the "mixed type".

For subsonic flows, the limiting case of incompressible approxima-

tion satisfies V 2¢ = 0, which, being linear, can be solved convenient-

ly for most cases. The difficulty of the general case Equation (IX.l)

is primarily in its nonlinearity, destroying the possibility of building

up a desired solution through superposition. So long as M2< 1

everywhere, a straightforward procedure is to expand the solution in

an ascending power series in, say, the free stream Mach number M _,

i.e.,

¢ = ¢0+ M_¢1 + M_ ¢2+ "'"

where ¢o obviously is the incompressible solution. The successive

terms ¢1, ¢2, ete. satisfy the Poisson equation

V2_bn = Fn(¢o, ¢1, "'',¢n--1).

This is known as the Rayleigh-Janzen method. As expected, ex-

perience shows that the convergence gets worse when the local Mach

number approaches unity somewhere.

More generally, Equation(IX.l) may be reduced to a linear prob-

lem by means of a "hodograph transformation", considering x and y

as functions of u and v. The continuity equation, Equation(VI.3),

may be written as

0 0

ox (pu) + -_ (pv) = o

from which a stream function _k may be defined such that

(IX.2) porky = pu, p0¢x = - pv

where po is a reference constant density. Let now (¢, tb) replace (x,y)

as the dependent variables. Also use the variables (q, 8) as polar

coordinates for the velocity, i.e.,

u = qcos8,

v = qsin_.

Then by definition the following complex relation holds,

d¢ + iP° d_ = udx + vdy + i( - vdx + udy)
P

= qe -_ dz
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with z = x -4- iy. Hence

Zq = q-le_I@q-_-iP° _ql'
p

31

ze = q-l e_ I¢e + i p°p¢,].

Requiring now that z_ = z_, we find by equating the real and imagin-

ary parts,

(IX.3)

Ce= poq _q
p

p being here regarded as a function of q.It isnow possibleto derive

a linear equation in either¢ or _ be elimination. For instance, in

terms of _k,

O [qd ,o _/,]__ c9 [_--_--'q]=O.(,x Zq( )
This equation was firstderived by Chaplygin in 1904 in his investi-

gationon gas jets.The disadvantage here isthat the boundary con-

ditionsinvolving a given body become very involved. One usually

has to take a solution and then find out the exact body shape for
which itisthe solution.

The relationp(q)implied above of course isgiven by the Bernoulli

equation. Now in the incompressible case, Equation (IX.3) reduces

to

1

_q=-q_k0, ¢0=qCq.

Chaplygin observed that the general case willassume a similarform

i[

q dq _,-_,} Poq

which may be integrated into q2 1- (po/p) 2, expressing the re-

quired p(q). Indeed the Bernoulli equation yields such a form for the

hypothetical gas with , = - 1. Thus by approximating the true

isentropic relation p _ p* by an expression
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p =a+bp -I

itbecomes possible to relateincompressible and compressible solu-

tions in the hodographic variables.The well-known Kbrrn_m-Tsien

approximation for subsonic flows amounts to a tangent approxima-

tionof the isentropiccurve p against 1/p, near the referencedensity

p0, chosen as the density at the "stagnation point" where q--0.

P

I ,_
I •

1

1/po 1/p

FIGURE 16. Isentropic Curve in K_'zn_n-Tsien Approximation.

It should be noted that Equation (IX.3) isno less general than

Equation (IX.l) and therefore not restrictedto subsonic flows. As

a matter of fact,certain simple solutions gives examples of contin-

uous flows involving both subsonic and supersonic regions.In inter-

changing the roles of (x,y) and (q,0),however, a one-to-one cor-

respondence isimplied.When _(q,O)/O(x,y) ---0 a finiteregion in the

x,y-plane ismapped to a lineor a point in the q,0-plane.We get for

the former a solution,ifM _>1 everywhere, known as the "Prandtl-

Meyer flow", corresponding to the "simple wave" of the previous

section,while the latterclearly represents a uniform flow. When

O(x,y)/O(q,O)= 0,a finiteregion in the hodograph plane ismapped

generallyto a line in the physical plane, requiring therefore multi-

valuedness of the flow along this line--againa physically unaccept-

able situation.Sucl_linesare known as "limit lines",occurring only

when M _ 1 locallyand indicatingthe breakdown of the assumed

continuous irrotationalhomentropic flow.

In the region of supersonic flow, since Equation (IX.l) becomes

hyperbolic, the method of characteristicsagain may be used. The

characteristicdirections,corresponding to Equation (VIII.3) are

found to be
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(IX .5)

UO

dy a2 q_ "v/(IPI2- 1)

dx u 2

1-
a 2

the "q=" sign corresponding to the C_-directions, respectively in

Figure 17. It can be verified that the C_-directions make an angle OM

with the local velocity vector, 0M being the "Mach angle",

aM= sin-' 1
M"

Y

C+

0M
:x

FIGURE 17. Characteristics in Supersonic Flow.

The characteristic conditions, corresponding to Equation (VIII.4),

may be conveniently expressed in p and 0, 0 denoting the local

velocity direction, as

(IX.6) cot0M dp q: q2d# = 0 along C_.
P

The "simple wave" solution when a finite region in the x, y-plane is

mapped to a single characteristic C+, say, in the p, 0-plane follows

directly

dp = _I2 dO/ _/ ( M 2 -- 1),

hence dp/dO > 0 in such flows. In conjunction with the Bernoulli

equation the above may be integrated. We only note that since

dp + q dq = O
p

the "simple wave" equation may also be written as
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dq dO

q - x/(M 2- 1)

hence dq/dO < 0 in such flows. Thus speed increases as pressure (or

density) decreases, and vice versa.
The same argument in the previous section may be followed to

prove that a region of uniform supersonic flow can be extended con-

tinuously into a region of variable flow only through the simple wave

solution. As an example, the supersonic flow turning around a corner

is obtained by drawing successive C_-lines from the corner until the

velocity leaving the last C_-line has turned through the full angle

a0. Since 0 is continuously decreasing in the stream direction, pres-

sure drops and speed goes up as a result. The transition region is

known as the Prandtl-Meyer expansion fan, and is shown in Figure

18.

FIGURE 18. Flow Turning a Corner.

If the flow is along a concave wall, A0 > 0 and pressure tends to

rise in the streamwise direction. Here again the C_-characteristics

will intersect and a continuous solution becomes impossible (See

Figure 19). Thus we must expect shock waves to appear in two-

dimensional steady flows when a supersonic stream is subjected

to a compressive disturbance (increasing pressure in the streamwise

direction).

X. Shock conditions and flows with shocks. Consider now the one-

dimensional problem of a piston moving uniformly at velocity U

into a long tube containing gas at rest with pressure Pl and density

pl, as in Figure 20. We postulate a shock wave separating the dis-
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FIGURE 19. Flow Along Concave Wall.

turbed and undisturbed regions, advancing at an unknown velocity

UA. It seems clear that UA must be defined by only U, Pl, and pl,

hence a constant. By dimensional reasoning,

UA = UF V/(Pllpl) )

Now it is possible to let an observer ride on the shock AA, reducing

the flow near the shock to a steady one (see Figure 21). For a small

area on AA, the conservation laws of mass, momentum and energy

then give

olU, = 02

(X.1) Pl -_- pl U_l = P2 _- P2 U_2,

plU, (hi-t- -_-)-_p2U2 (h2-_- ?) ,

h being the enthalpy as used in Equation (IV.14"). Together with the

equation of state, p = pRT, all the variables with suffix "2" can be
solved in terms of those with suffix "1". The result is known as the

"Rankine-Hugoniot" relations. It turns out that ifM1 -= U1/v/(_/RT1)

> 1, then P2/Pl, pz/pl and T2/T1 are all greater than unity, while

A

i I

'UA
U I

I
I

A

Pl, Pl

FIGURE 20. Piston Moving in Tube.
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M2- U2/X/('yRT2) <: 1. Furthermore, the entropy $2 is found to be

higher than $1. Hence, although the same Equation (X.1) holds if

both U1 and U2 are reversed in direction, the second law of thermo-

dynamics is obeyed only when the motion is in the direction

sketched. Thus the shock wave propagates into the calm region at

a supersonic speed {with respect to the sound speed ahead of it).

A

!

U 2 | UI=-UA

I

P2, P2 I Pl, Pl

I
!

A

FmvnE 21. Region near Shock Wave.

Turning back to the piston problem, we see that a solution is pos-

sible by taking the disturbed region to be in a uniform state, deter-

mined by requiring U2 = U+ U1 after the shock of the Mach

number M1. That there is no other solution can also be shown in the

following manner: We need a solution in the wedge shaped region

in the x, t-plane as shown in Figure 23, taking on the velocity u = U

along the line OA and the velocity U2 - U1 and density p2 from the

shock relation along the line OB. Now the lack of a length scale

suggests that the solution must depend on a single variable _ = x/t.

It is then easily verified that a solution of the form p = o(D, u = u(D

cannot be made to satisfy the boundary condition except as con-

stants.

It further is clear that a uniform translation of the entire flow field

in any direction should not affect the conservation laws. In particu-

lar, by imposing a uniform velocity v parallel to the wave front AA,

the oblique shock making an angle a with the oncoming velocity U_

is obtained (see Figure 23). The normal velocity component is there-

fore seen to be the effective one in causing the shock wave. In this

way the oblique shock relations follow immediately. As the conserva-

tion laws are applied to a small area on the wave front in deriving

Equation (X.1), the shock relations are actually local in nature and

remain valid locally on any curved shock surface.

The real gas of course has viscosity and heat conductivity as
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= Udt B

0 x

FIGURE 22. Flow Regions in the Piston Problem.

dissipative mechanisms, which resist the discontinuity occurring in
a shock wave of zero thickness. The net effect is to smear out the

shock wave, so that the upstream and downstream densities pl and

p2, say, are approached only asymptotically. However, most of the

change occurs in a very small thickness of the order of the mean free

path of the gas molecules. Unless the upstream or downstream part

of the flow varies significantly in such a small thickness, the shock

structure plays a negligible role in fluid dynamics.

We now mention some examples of steady flows with shock waves.

Consider a two-dimensional wedge placed in a uniform supersonic

stream. In previous sections, we concluded that the compressive

disturbances due to the turning of the streamlines to parallel the

wedge surface causes the presence of shock waves. By inserting a

straight oblique shock attached to the vertex, it is generally possi-

ble to have a uniform and supersonic flow parallel to the wedge after

the shock, as shown in Figure 24. For a given M1 _ 1, however, the

wedge angle may be too large for any attached straight shock to turn

A

I

v I

I
I
I
I

,4

FIGURE 23. Region near Oblique Shock Wave.
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FIGURE 24. Steady Flow with Shock Wave. I.

the streamline sufficiently. Then it becomes necessary to postulate a

"detached shock" in front of the body, starting necessarily as a

normal shock at the line of symmetry, as shown in Figure 25. The

flow behind the normal shock is of course subsonic, but as the shock

bends gradually toward the body surface away from the line of sym-

metry, the flow behind the shock eventually becomes supersonic.

The flow problem involving detached shocks is thus of the mixed

type and difficult to treat except numerically.

MI> 1

----)

shock

I

/

FmunE 25. Steady Flow with Shock Wave. II.

As soon as curved shocks appear in a uniform stream, it should

be noted that the flow behind it is strictly speaking always rota-

tional. The entropy change depends on the obliqueness of the shock,

and the different values of entropy along different streamlines give

rise to vorticity (Equation (VI.7), "Crocco's Theorem"). For in-

stance, to calculate the flow around a two-dimensional curved body

with a sharp nose in a supersonic stream, the solution should be

started with an attached shock at the nose and continued by the

method of characteristics, complicated by the unknown shock in-

clination at successive steps as well as the resulting rotational nature

of the flow (see Figure.26). However, the entropy change across a

shock turns out to be third order in the "shock strength" parameter,
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which may be taken as (P2-Pl)/Pl. If the shock is not strong, the

assumption of isentropic flow is not too far wrong. Thus a practical

approximate method for the curved body problem, known as the

"shock expansion method", is to regard the streamline immediately

adjacent to the body as following a Prandtl-Meyer expansion after

the leading edge shock. Its use of course cannot be extended to hy-

personic flows where the shock will always be quite strong.

MI> 1

---->

FIGURE 26. Steady Flow with Shock Wave. III.

In hypersonic flow the blunt body is of practical interest (see

Figure 27). The very difficult problem of the mixed type flow behind

a detached shock is an inherent feature. The limiting case of M1 --* _o,

however, permits at least a much simplified first approximation.

MI>> 1

shock

FmURE 27. Steady Flow with Shock Wave. IV.

Based upon the observation that, after a normal shock the Rankine-

Hugoniot conditions give the density ratio as

P2 -- U1 _ (_ + 1)M_ ---, ('r + 1____)as M_--* _o,
p_ U2 2 q- (_, - 1)M_ (_, - 1)
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it follows that if _ = 1, then p2/pl --* oo. For air at normal tempera-

tures y = 1.4; at very high temperatures with dissociation -/becomes

even closer to unity. Thus as a rough approximation we might

examine the flow with -/-- 1. Now as p2/pl _ oo, the shock will locally

simply wrap around the body, since the continuity equation is only

satisfied by having no thickness between the shock and the body.

Neglecting the actual thin "shock layer" thickness, the pressure on

the body can be determined directly from ,simple momentum con-
sideration:

P - P_ _ pl U_ cos20.

This result is identical with what would have been predicted ac-

cording to Newton's corpuscular theory, that the oncoming gas con-

sists of particles moving at the same speed []1 (see Figure 28).

#

U1

FIGURE 28. Newtonian Approximation.

Hence this type of approximation is referred to as "Newtonian".

For refinement the effects of the error of _ = I has been accounted

for, for instance, by expanding the solution in terms of the small

parameter (_ - 1) / (_ + 1).

XI. Viscous flows and the low Reynolds number approximations. We

have so far considered a great deal of the fluid motion under the

inviscid approximations, on the basis that 'for small viscosity and

high speeds the viscous effects will be confined to a thin boundary

layer immediately adjacent to the body and to a wake behind the

body. Such theories obviously can be of no value in connection with

the question of skin friction and heat transfer which depend on the

details of the motion within the boundary layer. Furthermore, the
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precise boundaries of the wake must be known in order to construct

the essentially inviscid solution surrounding the body and the wake.
It was first systematically observed by Reynolds in pipe flows that

the viscous fluid motion can assume different forms depending es-

sentially on the dimensionless Reynolds number Re - VL/v, where

V is the characteristic velocity (e.g., mean flow velocity through the

pipe), L a characteristic length (e.g., the pipe diameter) and p the

kinematic viscosity of the fluid. On the one extreme, at sufficiently

low Re the fluid may move steadily in layers parallel to the pipe axis;

on the other, at sufficiently high Re the motion may become time-
dependent, irregular and random, but with well defined time aver-

ages. The former is referred to as "laminar" motion while the latter

is referred to as "fully turbulent" motion. Naturally there is also

a "transition" region in which the laminar motion develops into the

fully turbulent one. Similar types of motion prevail also in boundary
layers. The details of the flow clearly cannot be investigated without

first knowing whether the motion is lamina or turbulent. The ques-
tion of the transition from laminar to turbulent motion is thus of

prime importance.

Generally speaking, when the flow is ostensibly governed by physi-

cal parameters which are invariant with time, the laminar motion

corresponds to the solution of the equations of motion under the

assumption of steady flow. If deviations from the steady flow can

occur without changing any of the governing physical parameters,

the question must be one of stability. As usual the stability problem
may be formulated by studying the behavior of perturbations. Un-

fortunately, mathematically the stability theory is rather difficult

even for very simple laminar flows under infinitesimal disturbances.

The results are further valid only for the initial breakdown of the

laminar flow. Nevertheless the stability theory does provide quali-

tative correlations between transition and the various physical para-
meters. The actual beginning of the fully turbulent region however

is yet beyond the capability of theoretical prediction. The situation

is complicated in addition by the fact that, for bodies in flight,

irregularities of the body surfaces and in the free stream all have a
profound influence on transition.

The analysis of fully turbulent flow is even more difficult. By put-
ting the instantaneous flow variable as the sum of the "mean" part
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plus a fluctuation, equations for the mean motion may be derived

from the general equations of motion, but contributions due to the

nonlinear interaction of various fluctuations inevitably show up as

additional unknowns. For instance, in the mean momentum equa-

tion, the momentum transfer due to the fluctuating velocity compo-

nents through the fixed control surfaces of a fluid element leads to

the turbulent or "Reynolds" stresses. In simplified analyses, ad hoc

assumptions are made by expressing the Reynolds stresses in terms

of other mean flow variables, and a formal solution may then be

carried out involving adjustable parameters, which are finally chosen

in some way to agree with experimental findings. Such theories are

of course semi-empirical in nature, but often unavoidable for prac-

tical purposes.

We restrict ourselves in the following to only some of the laminar

flow problems. It may be noted that most of the peculiar nature of

viscous fluid motion is due to the relative roles of the viscous term

and the nonlinear convective terms such as Y • V Y in the equations

of motion. Thus not much generality is lost when the complications

of compressibility are omitted for brevity. For an incompressible

viscous fluid, Equations (III.2) and (III.3), together with Equations

(III.9) and (III.11), lead to the following

V .V=O,
(XI.1)

(0v )o -_+V.VV =-Vp+_V2V

known as the "Navier-Stokes equations", in which the viscosity

coefficient may be regarded as constant if the temperature range is

small. Our purpose is to examine some of its solutions for flows over

bodies. The boundary condition on the body is that of "no slip" as

discussed in §IV. After the velocity and pressure fields are deter-

mined, the temperature field may then be solved separately from the

energy equation Equation (III.14), under the "no jump" boundary

condition.

Since Equation (XI.1) is nonlinear, an attempt to simplify is

naturally that of linearization for small perturbations. Considering

therefore an object moving at very low speed in a fluid at rest,

we might neglect the quadratic "convective" terms V - V V from

Equation (XI.1). It follows immediately that
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V 2p = O,
(XI.2)

V2V2V = 0.

Since the highest order derivatives are not disturbed, it appears that

all the boundary conditions for the original equations can be accomo-

dated. This was first used by Stokes to calculate the drag on a sphere

moving steadily at a low speed V_ in an unbound fluid at rest, and

is known as "Stokes' approximation". By using the sphere radius

"a" as a characteristic length and the speed V® as the characteristic

velocity, an order of magnitude estimate gives

pV.V V V®a
-- = Rea.

#t V-'2V _ lp

Thus Stokes' approximation corresponds to the limiting case of

Rea<<l, i.e., very low Reynolds numbers based upon the sphere

radius "a".

The explicit solution of Stokes' sphere problem, however, leads

asymptotically for large r to,

v o(a)]
where r is the radial distance measured from the center of the sphere,

the coordinate axis having been fixed on the sphere. As r/a--* Go, we
find in fact

pV • VV V_r
-- -----_ co,

_V2V _ v

showing that Equation (XI.2) cannot help but fail as an approxima-

tion of Equation (XI.1) at far enough distances, regardless of the

smallness of the Reynolds number. In other words, the convective

terms eventually take the upper hand as compared with the viscous

terms. The seemingly innocent Stokes' approximation is not uni-

formly valid. In fact, for two-dimensional problems, it is easy to see

that Equation (XI.2) must lead asymptotically for large r to,

In .n unbound fluid the condition of uniform stream at large dis-

tar_ces cannot be satisfied at all.
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The difficulty of Stokes' approximation is perhaps best understood

by observing that there are actually two characteristic lengths in

viscous flow. Besides the geometrical length "a" we also have a

viscous length ,/V_. In the near field close to the body, the dimen-

sionless distance of interest is indeed r/a, but in the far field away

from the body the flow must be expressible in terms of the dimen-

sionless distance vr/V® regardless of the body. In general, therefore,

two separate approximations are called for, to be matched somehow

in an overlapping region where both might be acceptable. In the

terms of Lagerstrom, Kaplan and Van Dyke, it is an example re-

quiring the matching of an "inner" and an "outer" expansion. For

the technique of "inner" and "outer" expansion, see [7].

The criticism of Stokes' approximation regarding its behavior at

large distances from the body was first made by Oseen. As a remedy,

Oseen's proposal was to recognize the far field as a small perturba-

tion of the steady uniform stream, hence

(XI.3) V. V V_-- V_ • V V'

where V' = V - V_, the perturbation velocity. Since the rest of the

terms in Equation (XI.1) are linear in V, they may all be written

without change in terms of V'. Retaining Equation (XI.3} as a first

approximation of the convective terms everywhere, we get the "Oseen

equation" for steady flows--

V .V' = 0,
(XI.4)

pV_.VV'= - Vp+#V2V '

again with the same boundary condition as before but expressed in

V'. As an approximation for the far field, evidently the primary ef-

fects of the convective terms are represented correctly. As the body

is approached, the flow will be characterized by the geometrical

length "a" and the convective terms still are much smaller than the

viscous terms for V= a/v << 1. It is however of uncertain validity in

the region where the two types of terms are comparable. For the

sphere problem, the drag coefficient from the Oseen approximation is

found to be

Co= 6_ 1+ _Re,+O(Re_)
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FIGURE 29, Boundary Layer over a Flat Plate.

where the first term agrees with Stokes' result. (Terms up to O(Re_)

have been computed by Goldstein.) A recent more careful analysis

shows that the O(Re 2) term in the bracket actually should be

9/40 Re_logRea (see [6]).

XII. Theory of the boundary layer. In the other extreme of large Re,

we need to describe the motion in the thin "boundary layer" im-

mediately adjacent to the body. In §V it is seen that the boundary

layer thickness _ is 0(1/ x/(ReL)). For a point fixed in space, no mat-

ter how close to the body surface, as Re-* _ it will lie outside of

the boundary layer. This corresponds to dropping formally the vis-

cous terms in the Navier-Stokes equation, and yields the inviscid

approximation. In order to keep the point in question within the

boundary layer, we must therefore maintain y/5 finite, where y de-

notes the distance from the body surface, even as _ -, 0 in the limit.

To be more specific, consider for simplicity the steady two-dimen-

sional motion of a flat plate moving parallel to itself in an unbounded

incompressible fluid. We have here again two length parameters:

the geometric length L of the plate, and the viscous boundary layer

thickness 5, _ _ L� _¢/(ReL). In the limit ReL---* co or _ -* 0, the invis-

cid solution is simply the undisturbed uniform flow. The u-compo-

nent velocity in the boundary layer parallel to the plate is generally

characterized by V®. The order of magnitude of the v-component

velocity may be inferred from the continuity equation,

v~O( f'°u o( OuWooxdY) ) "

Since all changes in the y-direction must be accomplished within the

thickness _, there follows also
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Oy

Thus by introducing dimensionless variables of comparable magni-

tudes

u*=u/V_, v*=(v/V_)x/(ReL), p*--p/pV_,

x* = x/L, y* = (y/L)x/(ReL),

. Ou* v* Ou* Op* + + 0
(XII.1) u Ox-----_ + Oy* Ox* _ '

(1) Op*0 _ - Oy*"

We now let ReL-_ co and omit the terms O(1/ReL). The result is the

boundary layer equation of Prandtl. The most important feature is

the replacement of V2u by O_u/Oy 2 in the x-momentum equation,

retainin_g at least one of the highest order derivatives in the full

equation. The solution is also greatly simplified by the consequence

of the approximate y-momentum equation that leads to

p* = p*(x*),

i.e., constant pressure across the boundary layer at each streamwise

station. In the flat plate case under consideration the pressure must

agree with that in the free stream, hence a constant. The derivation,

however, obviously is not valid wherever u and v are of the same

order of magnitude, such as the stagnation point regions at the

leading and trailing edges of the flat plate.

The same order of magnitude arguments can be applied to bodies

of arbitrary but smooth shape. By interpreting the x-coordinate as

running along the body surface and y normal to it, the same bound-

ary layer equations result except that the omitted terms include

those of 0(_D, where K is the characteristic curvature of the body

shape. The pressure remains unchanged in the y-direction, the cor-

rection due to centrifugal force being O(_D. To match the boundary

Ou* Ov*

Ox* + --Oy*= O,

Equation (XI.1) becomes
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layer solution with the inviscid solution which prevails beyond the

boundary layer, it is noted that since _--* 0 in the limit, the condi-

tions at the "edge of the boundary layer" must agree with the

inviscid solution evaluated at the body surface. This consideration

leads to the boundary conditions that, as y* --. ¢o

U---* Ui(X, 0), p ---*pi(x, O)

Ui(X, y) and pi(x, y) being the inviscid solutions. There is on the other

hand no condition on v* as y*_ co; so long as it is finite, the dis-

crepancy between v=limR%_v*/v/(ReD and vi(x,O)=0 is of
no consequence at this level of approximation. At the body surface,

y = O, the "no slip" condition of viscous fluids must be satisfied by

setting u = O, v = 0 as usual.

FIGURE 30. Boundary Layer over Curved Body.

It should be remarked that the boundary layer equation would

assume different forms depending on the choice of the coordinate

system, hence also the flow field which follows as the solution. In

his study of the two-dimensional steady incompressible boundary

layers, Kaplan introduced the notion of an "optimal" system of

coordinates that render the boundary layer solution to agree com-

pletely, as y*--. _o, with the inviscid solution evaluated at the sur-

facey--_0, in both u- and v-components to O(1/v/(ReL)). But the

boundary layer solutions in the optimal and any other nonoptimal

system of coordinates are shown to be transformable into each other.

Furthermore, he proved that the skin friction at the body surface is

independent of the coordinate system. The choice of the coordinate

system is therefore not too crucial for ordinary purposes.

Though much simplified from the full Navier-Stokes equation,

the nonlinear boundary layer equation still defies general treatment.

To reduce Equation (XII.1) to a single dependent variable, the
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stream function ¢ may be introduced by defining

u* = O_lOy*, v* = - O_/Ox*

guaranteeing thereby the satisfaction of the continuity equation.

Now we apply the "von Mises transformation" to the second equa-

tion of Equation (XI.1) by choosing (x, _) as the independent vari-

ables instead of (x, y) and obtain

(XII.2) u, OU* dp* u*_(Ox* dx* + u* Ou*_O_ /'

p* = p*(x), given.

This equation is clearly parabolic in nature. Indeed, if the dimen-

sionless stagnation pressure P* replaces u* as the dependent variable

/$.2

p*-p* + --
2

Equation (XII.2) may be put into the form

0_0__ p. = [p. _ p.11/2 O2P*
dx* O_2

which becomes the diffusion equation but with a complicated dif-

fusivity. Thus the solution P*(x,¢) can be found in the region

x* >=0, ¢ > 0 if we specify an initial profile P*(O, ¢) along x* = 0 and

also the condition P*(x, 0) along _b= 0. Since p*(x*) is a given func-

tion, the conditions on P* of course are equivalent to the statement

that from a given initial velocity profile u(O,y) the solution can be

continued uniquely to x > 0 for given p(x). As ¢J-- % 02p*/0¢2---*0,

hence OP*/Ox---,O and the solution merges with the inviscid poten-

tial flow P* = const. Note also that no disturbances are propagated

upstream.

It is of interest to be able to stipulate an initial profile for the

boundary layer over an arbitrary body. For all blunt-nosed bodies

there always exists a front stagnation point O. Locally the flow is

equivalent to that against an infinite wall normal to the stream. This

is recognized as a special case of the symmetrical flow against a

wedge of half angle a. (In fact, the flat plate also is a special case,

with a = 0.) In all such cases it turns out that the inviscid potential

flow is of the type



BASIC FLUIDDYNAMICS 49

V_ OC X m,

the exponent m depending on the half angle a, 0 < m < 1 for 0 < a
< _/2. Although we do not have an initial profile u(0,y), a class of
"similar solutions" can be found in the form

.u dF
V® (x) d_

where F = F(_) and _ is defined by

= y� [2px/(1 + m) V® ]1/2.

The function F(_) corresponds to the stream function, satisfying an

ordinary differential equation:

F" -4-FF" + 8(1 - F '2) = 0,

(XII.3) /_= 2m/(1 + m)

with the required boundary conditions:

y=0, u=v=0orF(0)=F'(0)=0,
(XII.4)

y---_ oo, u---* V®(x) orF'(_)--*l.

The case of m = 0 gives the Blasius solution for the flat plate. The
case of m = 1 gives the stagnation point solution, which is in fact

the exact solution of the Navier-Stokes equation for the same prob-

lem. The existence and uniqueness of the solution of Equation
(XII.3) under boundary conditions Equation (XII.4) were estab-

fished mathematically for _ > 0 by Weyl. Numerical solutions for

various values of/_ (or rn) were calculated by Falkner and Skan, and

refined by Hartree. For B < 0, it is interesting to note that the con-

y _ _"

FIGURE 31. Similar Solutions of the Boundary Layer.
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/_ = - .199

_.,99
 -°3k/jff/!

u/V_ 1

Fm_JSE 32. Similar Solutions for Various Values of ¢_.

dition F'(_,)_ 1 fails to determine a unique solution, and Hartree

had to stipulate the additional requirement that F'(n) should ap-

proach unity in the most rapid possible way. Even so, he had to

stop at B = - .199, beyond which the velocity develops an overshoot

within the boundary layer which seems physically hard to accept.

At _ =- .199 the profile has the feature that Ou/Oyly=o= O.

The similar solutions are useful not only to start numerical cal-

culations near the stagnation point, but have often been used as the

basis for constructing a first approximation for flows involving

rather arbitrary pressure distributions, such as might occur in prac-

tical problems. Let an arbitrary V_ (x) be given, then -dp/dx

= V_(dV_/dx). Now, proceeding as for similar solutions, let u� V_

= OF�On, but F = F(_,n) with

So"1 l,
_ - - V: dx, ,7=- 2 .

P

The boundary layer equation for F in (_, n) is found to be

F,..+ FF,. + _(})(I - F,2)= 2}(F.F_, - F_F,,).

(XII.5) 2} dV_

- V_ dx "

The boundary conditions are still Equation (XII.4)
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7=0, F=F,=0; _¢o, F_--1.

The approximation next is to neglect the right-hand side and solve

F as an ordinary differential equation with /_(_) as a parameter.

In other words, the similar solution corresponding to the local _(_)

is used as an approximation, the past history being partially ac-

counted for by the _-transformation. This is known as the "locally

similar" approximation. For improvement Gortler took it as the first

term of a series expansion in the solution of Equation (XII.5).

Nickel in [5] verified that the local similar solution always provides

a lower bound the true solution u(x,y) so long as d_/d_ < O.

Let us adopt the locally similar approximation to get a qualitative

picture of the flow within a boundary layer under pressure gradient.

If the pressure gradient is always "favorable" (V'_>_ 0), _ > 0, we

expect rather normal velocity distributions somewhat like that on a

fiat plate. But if V 2 < 0, it becomes possible for _ to reach the

critical value of -.199 and even pass it. There can then be no des-

cription of the boundary layer beyond that point. The question

arises: what happens then?

/ _ f SePtrr:t2"_ne

_ __ Separation point

FIGURE 33. Boundary Layer Separation.

It is usually taken that what happens then is the observed phe-

nomenon of "separation", i.e., the streamline begins to detach from

the surface. Beyond the separation point, close to the surface the

flow direction will be reversed, and the boundary layer approxima-

tion ceases to hold. That separation indeed could happen at

- .199 is made plausible by noting that here _u/ayly_0 = 0. Since

the streamline direction at the wall is given by

vI I I
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hence dy/dx = 0 if au/ayJyffi o _ 0; but the slope is of the form 0/0,

there indefinite if au/ayJy=o = 0. According to this criterion, an

adverse pressure gradient is necessary for separation, in perfect

agreement with experience.

We briefly turn again to the energy equation for incompressible

fluids, to introduce the basic concepts in heat transfer. The equation

reads, after taking the boundary layer approximations,

ah a
pu_ + p__ = a__,c_ay/

(XII.6)
# a2h

Pray 2

where the Prandtl number Pr - _/Cpk _-- .76 for air in the ordinary

temperature range. The equation clearly is of the same structure

as the x-momentum equation in Equation (XII.1). When (u, v) are

described by a similar solution, h will resemble u in behavior and

depend on the same variable. The equation is linear for given (u, v),

and can be more easily solved in general. Let us mention only the

simplest case, that of a fiat plate, where the x-momentum equation
is

au au a 2u

pu _x + pv_ -- _ aY2 .

For the case ofPr = 1, we clearly have a special solution h = au + b,

with constants a and b, suitable as the solution if h assumes constant

values at y : 0 and as y--, o% i.e., constant wall and free stream

temperatures. The heat transfer at the wall is, in such cases

= = = aT 0,Jo ,=o ,-o ,-o
or q0/T0 = a, r0 being the shear stress at the wall. This is known as

"Reynolds' analogy" (of heat transfer and skin friction), ordinarily
cast in terms of nondimensional coefficients.

In the case of compressible fluids, the boundary layer concept can

be used to derive a set of simplified equations similar to Equation

(XII.1). Through the variable density, the momentum and energy

equations become coupled and must be solved simultaneously,

adding much complexity in the solution. Only in special cases may
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the problem be reduced to an equivalent incompressible one through

suitable transformations. At hypersonic speeds, the shock wave,

whether detached or not, tends to approach the body surface. Then

the inviscid and viscous layers would interact with each other, or

even merge together. All these phenomena require considerable

finesse in handling. For general three-dimensional bodies in un-

steady motion, the theory is yet in an undeveloped stage.

References

1. S. Goldstein, Lectures in fluid dynamics, Interscience, New York, 1960.
2. H. Jeffrey, Cartesian tensor, Cambridge Univ. Press, New York, 1931.
3. H. Lamb, Hydrodynamics, 6th ed., Cambridge Univ. Press, New York, 1932.

4. L. M. Milne-Thomson, Theoretical hydrodynamics, 4th ed., Macmillan, New
York, 1960.

5. K. Nickel, Eine einfache Absch_tzung ffw Grenz_hichten, Ing. Arch. 31(1962),
85-100.

6. I. Proudman, and J.R.A. Pearson, Expansions at small Reynolds numbers for the

flow past a sphere and a circular cylinder, J. Fluid Mech. 2(1957), 237-262.

7. M. van Dyke, Perturbation methods in fluid mechanics, Academic Press, New York,
1964.

CORNELL UNIVERSITY



S. F. Shen

Iv67

Shock Waves

in Rarefied Gases

I. Introduction. We shall survey the developments in rarefied gas-

dynamics toward the solution of flow problems, the shock wave

structure serving as an example illustrating the difficulties that led

to the various refinements and alternatives. By rarefied gasdynamics

is meant the branch of gasdynamics which, because of the effects

of very low density, cannot be dealt with by the conventional con-

tinuum theory of a viscous and heat-conducting gas, hereafter

referred to as simply the (conventional) "continuum theory."

The concept of a continuum, however, is usually still adopted, but

modifications are required in two main aspects: Firstly, the law

relating the viscous stresses to fluid deformation (the Navier-Stokes

relations) and that relating the heat flux to temperature gradient

(the Fourier law) are theoretically no longer valid. Secondly, the

boundary conditions of "no velocity slip" and "no temperature

jump" at a solid boundary, generally assumed in conventional

continuum theory, must be reexamined. By restricting ourselves

to the problem of the shock wave structure, we essentially divorce

ourselves from the latter question. Our efforts therefore are directed

toward only a formulation of the proper equations to be used in

tariffed gasdynamics.

54
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To seeka logical theory which is capable of treating the departure'-
from the conventional Navier-Stokes and Fourier laws due to the

very low density, we fall back on the kinetic theory of gases. The

gas is now regarded as consisting of numerous molecules interacting

with each other and with the environment according to the laws of

classical mechanics. For the simplest case of a monatomic gas, the

molecules are all alike and have spherical symmetry. This will be

understood as our model in the following discussion. The phenom-

enal success of kinetic theory, with suitable chosen force laws be-

tween molecules, in predicting quantitatively the viscosity and heat

conduction coefficients for use in conventional continuum flows is

well known. Equally confirmed are its deductions concerning the

flow in the "free molecule" limit of very, very low densities, for

instance regarding such flows through orifices or capillaries. These

being the two extremes of the spectrum, we expect that it should

also be fruitful in intermediate stages that characterize rarefied

gasdynamics.

II. Flow regimes and the Knudsen number. When we consider

a body of gas enclosed in a vessel of volume V, in equilibrium,

the state of the gas is defined thermodynamically by the pressure

p, the density p, and/or the temperature T. These quantities

must first be defined from the viewpoint of kinetic theory. Let

each of the molecules have a mass m, and the total number in V be

N. The density follows directly as

(II.1) p -- Nm/ V = nm

where n _ N� V, the number density. If each molecule is charac-

terized by its "size" a, which may be the diameter for the simplest

model of hard sphere molecules, the average spacing _' of the N

molecules occupying volume V is

N_ '3-_ V

or X'_ n -_/3. We have thus a dimensionless parameter for the

degree of rarefaction of the gas as X'/a, i.e., the average size of
the cell for each molecule in terms of the molecular diameter. In

classical kinetic theory, this parameter is shown to be related

directly in the corrections of the perfect gas law:

(II.2) p = pRT.
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PWe shall, however, assume that X'le is sufficiently large that the

perfect gas law holds. A typical value of a is lO-Scm. At standard

conditions (O°C and 1 atm.), the number density of gas molecules

is given by the Loschmidt number,

or
n = 2.69 × 10_/cm. s

X' 1
=__ X 10-ecm.

and X'/e--_ 33. The ratio becomes obviously larger as the density

is decreased, since a remains unchanged.

The parameter X'/a is "static" in nature. As molecules are actually

continuously in motion, there is a "dynamic" characteristic length

representing the average distance travelled by a molecule between

successive collisions, known as the "mean free path" X. Imagine the

molecules arranged actually at distance X' apart in a regular cubic

pattern, as shown in Figure 1. When a molecule moves in an arbi-

trary direction, the probability of its hitting a second molecule at

"I¢- 0 0 i'O 0

0 ,0 0 0

O_ 0 0 0

FIGURE i. The Mean Free Path

a distance of O(X') is proportional to the ratio of the target area

2 to the passage area X,2. Hence we expect

(If.Z) X _ X' O(x'2/ ¢2) _ 0(1/n_2).

With the same typical values for X' and e the estimate at O°C and
1 atm. is

_ (2.69 × 1019)-I × I016_ 1
X 10-3cm.

The mean free path goes up quickly as the density is reduced. In

the standard atmosphere at 100 miles altitude, for instance,

X' ____10-4cm.,

___104cm.
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Now gasdynamics deals always with flow problems, therefore in-

volving in addition a characteristic length which represents the

scale of the flow phenomenon. To fix our ideas, let us imagine the

flow as over a body of length L. We assume the flow can be de-

scribed mathematically as a continuum, so that it must be possible

to introduce "fluid elements" of size l with l << L, as shown in Figure

2. On the other hand, to apply kinetic theory, it is necessary that

statistical properties over molecules are well defined in a fluid ele-

ment. In other words, there must be a sufficient number of molecules

in a cell of size l, or />> _,'. Thus rarefied gasdynamics generally

deals with the restriction L >> l >> ),' >> a. Because of the large dif-

ference of orders of magnitude between X and X', the value of X

may be still taken as arbitrary, compared to l or L.

l

FIGURE 2. Body and Fluid Element

The significance of the mean free path is that it is a measure

of the memory of the individual molecules in a flow field of size

L. When a molecule hits the body, it rebounds after taking on some

characteristics from the body surface. The explicit dependence of

the molecular motion on the body characteristics is therefore mainly

confined in a "sheath" of thickness roughly O(X) surrounding the

body, which is referred to as the "Knudsen layer." Beyond the

Knudsen layer the body influence is only indirect, being propagated

through successive collisions of the molecules which never were in

direct contact with the body. The conventional continuum equations

of motion display no explicit dependence on the body geometry and

its properties. It seems clear that they are applicable at most to

the region beyond the Knudsen layer. If boundary conditions are

nevertheless stipulated at the body, the implication must be a

vanishing thin Knudsen layer. The case consequently corresponds
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to the limit of X/L ---*O. The parameter _/L is known as the Knuclsen

number, Kn.

In the other limit of Kn _ _, the Knudsen layer extends to a

sphere of radius _,, the body being shrunk to a small region of size

L near the origin, as shown in Figure 3. Of all molecules crossing

the spherical surface of area 0(_2), only a small fraction O(L2/h 2)

has collided with the body and rebounded to cross the sphere again.

FIGURE 3. Large Kn

Hence, if we examine the composition of the molecules in any small

volume element d V in the neighborhood of the spherical surface,

there are hardly any that come directly from the body. The flow

in the region outside of the sphere is described by conventional

continuum theory, but it is now almost undisturbed by the presence

of the body. Such considerations lead to the "free molecule flow"

approximation, where momentum and energy transfers to the body

are evaluated as if the free stream were completely undisturbed

by collisions caused by those molecules rebounding from the body.

It may be noted, however, that the "free molecule flow" approxima-

tion is never valid for the flow field at distances away from the

body large compared to the mean free path. In particular, for two-

dimensional motions in the x,y-plane, say, many molecules from

the z-direction certainly have suffered collisions before arriving at

the plane of motion. This has led to difficulties, for instance, in

the free molecule flow through a two-dimensional channel.

Between the limits of continuum and free-molecule flows, the

flow regimes are often classified according to the magnitude of the

Knudsen number, following Tsien [20]. Thus for Kn << 1 the flow

is said to be in the "slip flow" regime, in the sense that only the

"no slip" and "no jump" conditions at a solid boundary need to

be modified, but the equations of motion remain unchanged. Beyond
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the "slip flow" regime and before reaching the free molecule flow

limit, i.e., for Kn _ 0(1), the flow is said to go through a "transition

regime." It is in fact for flow problems in this regime that much

work remains to be done.

III. Kinetic definition of pressure and temperature of gas in

equilibrium. The Maxwellian distribution function. We return to

the question of defining pressure and temperature for gas in equili-

brium in terms of the motion of the molecules. The gas is assumed

to be in a fixed vessel, and the pressure is uniform. In the interior

consider a small volume element d V enclosed by a control surface

S (see Figure 4). Through a small area dS on the surface, molecules

FIGURE 4. Determination of Pressure

having velocity _ will pass at the rate of n_. r dS, where n_ is

the number density of such molecules, and w the unit outward
normal on dS. The rate of momentum loss due to such molecules

in the v direction is therefore mn_(_.r)2dS. For all molecules

having various velocities /_, the total rate of momentum loss is

obtained by summing over All _'s. The result on the other hand

must be equivalent to the action of a pressure force pdS on the
same surface element. Hence we write

p = _"_n_rn(_. ,).2.

For a comparable definition of the thermodynamic temperature,

we consider again the gas in a fixed vessel of volume V. Let us

imagine heat has been added to raise the temperature from ab-

solute zero to T. Kinetically, all this energy, say E, can only go

into the translation energy of the monatomic molecules. Thus

foE= CodT . p V= _'_n_ V. _ m_ 2
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p fJoT CvdT = __, 1_mntiiz
_2

where Cv is the specific heat at constant volume, per unit mass,

and is generally temperature dependent. This gives an implicit
definition of T in terms of the molecular motion.

Since it is always assumed that a large number of molecules

are present in the small control volume d V, we must regard //

as covering the entire range between zero and infinity. The sum-

mation over _ therefore goes over into an integration. The number

density n_ may be rewritten as

n+= hi(e) d_,

n being the number density of all molecules, and [(D d_ giving

the fraction havlmg velocity between _ and t + d_. The symbol

d_ above should be understood as a volume element in the velocity

space, e.g., in Cartesian space (_x,_2,_3),

dF.----dl_zd_2d_.3

and not a differential vector. The function f(O is referred to as

the "velocity distribution function."

Obviously, since

n= _.n,= f nf(ti)df,=n fJ(Dd,,
i

the velocity distribution function has the property

f/(_) d_ = 1.(III.1)

Turning to the pressure definition, we have

p = fnfdlim(li. W) 2

(III.2) Je
= p<_i)

where _ =-_. p, the velocity component normal to the surface,
and the bracketed quantity (Q) represents in general the average

of the property Q over all molecules in the velocity space,
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f

(III.3) <Q) - J Q[(D
d}.

Likewise, for the temperature we get

(III.4) p C_dT = -_ (_).

It isnext of interestto deduce the velocity distributionfunction

in a gas in equihbrium. First of all there can be obviously no

dependence on orientation,so the distributionfunction must be a

function of the speed _ alone.Let the entirespeed range be divided

into a finitenumber of discrete cellsaccording to the average _°

within the ceil,and letthe number of molecules within the ith cell

be a_.It isthen postulated that at equilibrium the distributionof

the molecules isthe most probable random arrangement of the N

molecules into ail these cells,subject to the constraintsthat the

totalnumber N and the total kinetic energy E be kept constant.

If we assign sets of numbers a/,the number of ways to achieve

such an arrangement isN!/Ili(a_!).Therefore we write the proba-

bilityP of such an arrangement as P = N!/IIAa/!).For conven-

ience,the maximization may be carried out for P' = logP under

the constraints N = const and E--const. Using Lagrange's mul-

tipliersa and a', we finally seek to maximize P'-aN- a'E.
Since

0
raN= 1,
Oa/

the necessary condition is

d log(N!) - log(ai!) - a _-
da i

If x >>1, then with AX = 1 we have

d A log (x!)
d-x log(x!) _--__ AX -- log(x!) -- Iog((x -- 1)!) = Iogx.

Hence, assuming a/>>l,

1 a,m_,i_
log a/= log N - a -
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or ai = NA exp( - (a'/2) m_°2). If the cell size is made to tend to

zero formally, the distribution functions must be of the form

(III.5) [ = A exp( - _'_)

known as the Maxwellian distribution function. The two constants

A and 5 are determined by the constant E. To integrate, note that

the volume element d_ should be evaluated as that of the spherical

shell between speeds _ and _ -t- d_, i.e., 4_'_d_. In this way we find

3=E= c dr.
(III.6) A= \_] , 4-_

Meanwhile, for the pressure p, we choose _ to be in the Cartesian

x-direction and denote the velocity } by its Cartesian compo-

nents (}l, }2, }_). Then

_)) d_ld_2d_3 - p
28"

Since the perfect gas law is assumed to hold, the pressure formula

gives

1

(III.7) _- 2RT"

From the second of Equation (III.6)

c_=OE_ 0 3 _3 R,
OT OT 4_ 2

a well-known result in thermodynamics.

It should be noted that the assumption ai>> 1 that led to the

Maxwellian distribution is clearly violated as _ _o_, _. In fact, al-

though integrations in the velocity space are always formally

carriedout to _-- co, the logical cut-off for a given E cannot exceed

_m_ = V/(2E/m), which is the speed of a single molecule absorbing

the entire amount of energy. The assumption of a_>> 1 ceases to

hold before _o= _, and the Maxwellian distribution function

has little significance for molecules whose speeds approach _m_- It

however applies to almost all molecules.

With the Maxwellian distribution function, the state of a gas

is fully described by the two parameters n and _. Instead of B, it
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is often more physical to use the average speed of the molecules 6,

which is quite close to the speed of sound a (a = V/(yRT), where

_= 5/3 for monatomic gases), which is the propagation speed of

small disturbances and plays an important role in conventional

gasdynamics. Likewise the number density n is directly related to

the mean free path _. The state of the gas molecules thus may

also be characterized by 6-and X. Out of 6-and ;_, we can further

construct a time constant r or its inverse O:

1
(III.9) r - -

O"

O is known as the "collisionfrequency" of a molecule, since in

time St, 0St gives the average distance travelled 65t divided by

the average distance _,between collisions.

The time constant r is of considerable interest.If the gas is not

in equilibrium, it is plausible to imagine that co_,_ul,_......... tend to

bring the gas to the most probable, hence the equilibrium distribu-

tion. The time constant for this process is no other than r. In the

case of gas in nonuniform motion, there is also a time constant

for the overall phenomenon. If the latter is much greater than

r, at each instant and location the molecules in a small volume

element dV will be in "quasi-equilibrium." That is, as a first ap-

proximation, the velocity distribution should be Maxwellian, with

n and _ assuming the instantaneous local values, but the observer

must now ride with the average velocity U (over all the molecules

in dV). We denote this as the "local Maxwellian" [(0),

,mx0 = -- = exp( _c 2)

where c - } - U, sometimes referred to as the "thermal velocity."

It is easy to verify that following Equation (III.10), <})= U as

stated; also (c2> = 3/28, showing that /_ (or T) is intimately con-
nected with c.

As a further illustration, in a slightly nonuniform gas let us

assume that the state of the molecular motion can be still charac-

terized approximately by 6 and },. Together with the molecular
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properties of mass m and size a, there are now four parameters

from which, among other things, the behavior of the transport

properties may be deduced at least qualitatively. For the viscosity

coefficient u, suppose

= Mm, _,_, x).

By dimensional reasoning, there must be

mc F

The function G(x/a) should be taken in the limit X/a--- _. Thus

the first approximation should yield _ _ pSX, which is confirmed

by detailed analysis.

IV. The Boitzmann equation. The statement that the velocity

distribution function for a gas not in equilibrium is subject to

change due to molecular collisions is mathematically expressed

by the Boltzmann equation. Consider an arbitrary control volume

Venclosed by the surface S in the interior of the gas. On a surface

element dS let v be a unit outward normal (see Figure 5). For

FIGURE 5. Derivation of the Boltzmann Equation

those molecules having velocity between _(_) and _(1)-t-d_ (_), the

total number in V at any time is fvnf(_m)d_mdV. The flux

of such molecules through the surface S is J_ (_a). p) nf(_m) d_mdS.

Let further the rate that such molecules are created in a small

volume element d V, through collisions, be denoted by

O__Otnfl ¢oudli md V,

where fl- f(_m). Then we must have

O /vnfldV-t- fssnfltim dS= ;v 0 con• p _[n[, dV.



SHOCK WAVES iN RAREFIED GASES 65

By applying Gauss' theorem to the surface integral and letting

V--, 0, this becomes the Boltzmann equation:

0 0 con"(IV.l) -_nfl + V • nfl_ _1_= _nfl

In Cartesian coordinates, since _"_ is a constant vector in the

derivation, the Boltzmann equation becomes

o 0 I(IV.I') _n[1 + _i('_ nfl = -_n[_ _n

where xi are the Cartesian coordinates, _i(11 the Cartesian velocity

components of _, and the convention of summing over identical

suffixes is adopted. In more abbreviated form, this is sometimes
written as

O ] O _i(1_ ODlnfx = -_n[1 _n" D1 _ _ -[- OX i •

w

The evaluation of the collision terms in the right-hand side of

the Boltzmann equation of course requires detailed treatment. A

molecular mede! must be chosen first of all. The dynamic processes

of collision are usually simplified by making the following assump-
tions:

(1) only binary collisions occur, and (2) "molecular chaos" pre-

vails. The second assumption means that the joint probability of

finding two molecules having _ and _12_, resp., at a certain place

and a certain time is simply the product of the individual proba-

bilities as if the other were absent. Physically, it amounts to the

supposition that except during collisions, the molecules are un-

correlated with each other. Both assumptions are valid so long as

X'/a >>1, the second one in particular having been examinedin

detail by Jeans ([9, Chapter IV]).

We shall only briefly sketch what the collision term looks like.
The force field of each molecule is taken to be conservative and

spherically symmetric. The binary collision between two molecules

of velocity _x_ and _2_ turns _1_ into _<w and _2j into _2r, and may

be represented schematically as

(1, 2) --_ (1', 2').

We refer to this as a "direct collision," causing the loss of molecules



66 S.F. SHEN

"1." Because of the conservative nature of the process, obviously

an "inverse collision" can also happen, i.e.,

(1', 2') --- (1, 2),

causing a gain of molecules "1." The total number of either type

of collisions must depend upon the available number of the parti-

cipants, as well as the relative speed _ between the two molecules

and "cross section" S representing the effective target area. Thus,

the total number of class "1" molecules lost in dV during time

St, through direct collisions with all possible molecules of class "2" is

(IV.2) nfl d Vd_ (1)_t f,(2) nf2 _S d_ (2)

/2 denoting f(_(2)). Similarly the gain of molecules of class "1" in

dV during St, through all inverse collisions involving 1' and 2' is

_(2)nfl d_ (1)' d V _t nf_ e' S' d_ (2)'•

Note that since (1, 2) --, (1', 2'), for given _(1) the inverse collisions

must be summed up over all pairs of the 1'- and 2'-molecules through

the choice of molecules of different _c2_. However, the details of the

collision process show that

S' = S, fl' = _, d_(2)" d_ (1)' = d_(Z_d_ (1_.

Thus the gain of class "1" through inverse collision can be recast as

2)

Consequently, the right-hand side of the Boltzmann equation can

be put into a more convenient form and Equation (IV.l) becomes

(IV.3) Dln[1 = F n2 [[_[_ - [112] _Sd_(2_"
2)

In the case of gas in equilibrium, the left-hand side of Equation

(IV.3) vanishes. A possible solution is obtained by setting the

integrand in the right-hand side to zero. The procedure amounts

to the assumption that each direct collision is exactly balanced by

its inverse, often referred to as the "principle of detailed balancing."

As applied to Equation (IV.3), the solution of
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fif_ - f_f_ = o

is in general the local Maxwellian distribution [(o), Equation (III.10),

and proved to be unique (Jeans [9, pp. 25-28]; Grad [6]). To

satisfy the equilibrium requirement, naturally the mean velocity

U and temperature T here must be independent of space and time.

To justify the "principle of detailed balancing" in this case, it

should be mentioned that a consequence of Equation (IV.3) is

"Boltzmann's H-theorem," showing essentially that any distribu-

tion should indeed tend to [(o) through the collisions. For further

discussions of the theorem, see e.g., Chapman and Cowling ([4,

Chapter 4]).

It is observed that the expression (IV.2) expresses the total

number of collisions involving the class "1" molecules. Therefore

we may introduce an average collision frequency 01 for a class

"1" molecule, and it must be given by

(IV.4) 01 = f_(2) n[2_S d_(2}"

Formally then, the Boltzmann equation may also be written as

(IV.5) n!nfl = - o, [n.fl -- n_ ]

where _ is to be obtained by identifying the right-hand side with

that of Equation (IV.3), and has the significance of an average
distribution function for the outcome of the inverse collisions.

The property that _-_f(°) as the number of collisions increases

should be kept in mind.

We note that according to Equation (IV.4), the collision fre-

quency is directly proportional to the number density. In the

other limit of 01-_ 0 for extremely rarefied gases the "free molecule

flow" is obtained by setting the right-hand side of Equation (IV.5)

to zero, neglecting the collisions completely. The property nf then

is propagated without change in the direction _(1_ and at the speed

I_(1_1. By turning Equation (IV.5) into an integral equation, a

first order correction for "near free molecule flows" may be ob-

tained through iteration, using the free molecule solution to evaluate

n_, see, e.g., Willis [21].

V. The Maxwell transfer equations and the hydrodynamic equa-

tions. The Boltzmann equation is a nonlinear integro-differential
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equation, evidently very difficult to handle. In flow problems,

however, the complete information given by the distribution

function is much too detailed and more than necessary. Our interest

in most cases is in the average properties of all the molecules within

a "fluid element," such as the temperature T and velocity U. To

deduce equations governing these averages we turn to the Maxwell

transfer equations. These are obtained by multiplying the Boltzmann

equation by any function Q(_(_) and then integrating over the

velocity space $(1). Since Q($(1)) is independent of space and time,

the result from Equation (IV.3) is, dropping the superscript (1)

on _(D,

(V.1) -_-[n(Q) + n(Q_,) = (hnQ)_on.

The term (AnQ)_on on the right-hand side is simply an abbreviation

of the rather lengthy expression to be examined immediately.

Written out in full, the term is

<_nO)_ =f_,, f_2 Q, n2[/_f_ - fl f2]_2Sdli'" dti '2',

Q1 standing for Q(_). Since the integration is over all _ and

$c2_,the roles of 'T' and "2" may be interchanged without affecting

the result. Hence, alternatively,

( AnQ),_ = f_(2_ f_l, Q2n2[/_/_ - f2/_]_Sd'(2' d"l_.

We next note that when _ and _ take on all possible values,

so do _' and _2_.. But,

(1,2) _----(1', 2').

If instead all the inverse processes are considered, the integral

may also be expressed in

(AnQ>_o_-- _, _ o'n2[f_[2 ''l_'S'd_'_''d_'2''l,,2,, - ,,,2j ,; ,

=_(1) _,2, o'n2[/If2 - /_/6 ]f_S dli'x'dli'2'"

Again interchanging the suffixes "1" and "2," we get still another
form:
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Finally, a form symmetrical with respect to the indices "1" and

"2" is obtained by using the arithmetic mean of the four equiva-
lent expressions:

(AnQ)cou

1 f_( n2[f_[_ -- flf2] [QI + Q2- (Q_ + Q_)]_Sd_(l}d_ (2).(V.2) = 4 ,)_(2)

Equation (V.2) explicitly shows that if Q is a dynamical property

which is a "collisional invariant," i.e.,

Q, + Q2 -- Qi + Q_,

then (AnQ)_ vanishes. This is, of course, to be expected. The

right-hand side of the Boltzmann equation is the net change of

the number of molecules with velocity _(1). When multiplied by

Q_ and summed over all the molecules, the result is the net change

of the property Q for the aggregate due to collisions. If the sum

of Q does not change in any collision, the total cannot change for
all the collisions.

For conservative systems the coUisional invariants are mass m,

momentum rn_ and energy (1/2)m_ z. With Q-- m, Equation (V.1)

gives the "continuity equation" in conventional gasdynamics,

o °---pv, = o,
(V.3) _P + Oxi

where Ui are the Cartesian components of the mean or fluid velocity
U. With Q = rn_, there follows

0 0___p
_pU + Ox_ (_) = O.

Let us write

= U -}- c, or in Cartesian components,

_i= Ui + c.

where c is the "thermal velocity," and obviously (ci)= 0. Then

the transfer equation for momentum may be recast in Cartesian

coordinates after making use of Equation (V.3), into the conven-
tional form
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(V.4) p _ Ui + i_-_xj Uj = Pii

where Pij may be identified with the stress tensor in conventional

gasdynamics, and is seen to be given from the molecular view-

point by

(V.5) Pij = -- P (CiCj)"

If we sum the three "normal stresses" Pn, t°22 and P_, Equation

(V.5) gives

Pii = - p (c 2)= - p (c2).

But (c 2) = 3/2/_ = 3RT, and from the perfect gas law p = pRT.

Hence, as is usually defined, we also have

1

P = -- _ Pii.

After taking the pressure out, the kinetic expression for the "viscous

stress tensor" is found to he

(V.6) P_i = - P {c, cj) + _p

where _ij = 0 for i r_j, _ij = 1 for i = j.

Similarly, for Q = m_2/2, the transfer equation can be manipu-

lated into the form of the conventional "energy equation,"

(OT u OT_= OV i cgqi(V.7) p Cv -_ + '-_ / - P -_ + _ -+- Ox---(

where ¢ is the "dissipation function,"

p_ O U_
¢= 'JOxj

and q is the "heat flux vector," kinetically expressed as

In general Equations (V.3), (V.4) and (V.7) are called the "hydro-

dynamic equations," describing the change of the fluid dynamical

properties p, U and T in terms of the stress tensor and the heat
flux vector. If the distribution function is assumed to be a local
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MaxweUian, it is easily verified by direct calculation that P_ = qi

= 0, corresponding to the inviscid and non-heat-conducting ap-

proximation. When deviation from the local Maxwellian is small,

we shall see that the Navier-Stokes and Fourier laws emerge. When

these are no longer sufficient, there seems to be no other course

except through further analysis of the Boltzmann equation to

achieve an adequate approximation of the distribution function.

VI. Asymptotic expansion for near Maxweilian distributions. To

begin with, let us recall the Boltzmann equation in the form of

Equation (IV.5),

Dlnfl = - Ox[nf- n_].

The left-hand side must have a time constant _ characterizing the

change of the function n/1 as an overall phenomenon. The time

constant on the right-hand side is an average of the velocity-

dependent collision time 1/01, representing the details. Thus the

solution must behave differently depending on the ratio of these

two time constants. Let us assume that all %'s are 0(O), an

average; the ratio is then e= 1/(_-0). When e<<l, it is further

expected that /1 ----/_0_.

Restricting to e _< 1, a natural procedure therefore is to seek an

asymptotic expansion of fl in ascending powers of c:

(VI.1) /1 ~f_o_ + _/_1_+ 2/-_ + ....

We now revert to Equation (IV.3), noting that the left-hand side

is O(e), compared to the right-hand side and that [(o_ is a solution

for e = 0. By substituting Equation (VI.1) into Equation (IV.3),

to 0(_) the equation becomes

D1 nfl (°_= _ _ n 2 [( f1(°)'/2(1)'+/_wf2(°)')
2)

_ (f_o_f_ + f_l,f_o_)]aSd_C2,.

A slightly simpler expression results if we set c[ _ =fc°_b. The

equation for _ is

(VI.2) D_ n[_ °_ = _ n2f_°_f_ °_[_ + _ - _1 - _2] 9 S d_ <_.
2)
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The left-hand side being known, Equation (VI.2) is a linear integral

equation of the Fredholm type. If [(0) is chosen to be indeed the

"local Maxwellian,"

a

Then _ must satisfy the following:

(vI.3) f/(%d_=O, f/(%_d_=O, f/%c2d_=O.

Equation (VI.3) turns out to be sufficient to guarantee a unique

solution of Equation (VI.2) (Chapman and Cowling [4]). In fact
all that is needed eventually is a particular solution satisfying

Equation (VI.3). The result is the famous Chapman-Enskog
solution.

The particular solution of course depends on the explicit form
of the left-hand side of Equation (VI.2). Evaluating Dz n[_(°_we find,

(VIA)

where

Dznf_(°_ = n[_(°_{(_2m2-5)
b ou,t

e. _7 lnT+ ,SOx_ j

1

c_ t_'

cic_ 2 c2
= _ij.b,j 2 _ 3 ci

This expression enables us to be more specific about the time con-
stant y. From the two terms in the bracket, it is seen that

where T is the characteristic temperature level of the flow, AT

and AU are the temperature and velocity ranges, resp., and L is
the characteristic length. In order that e = 1/(;O)_ X/(c,,r-} <<1,

we must require (X/L)(,_T/T) << 1 and (_/L)(AU/Cm) << 1. For a
fixed Knudsen number X/L, the accuracy of the Chapman-Enskog

solution improves as AT/T and AU/c,, become smaller.
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We shall not go into the details of solving _ from Equations

(VI.2) and (VI.3), for which the reader should consult Chapman

and Cowling [4]. It suffices for our purposes to note that, because

of the form of Equation (VI.4), it is possible to represent _ by

4_= - Ac. V ln T- Bb,j OUi
Oxi '

A and B being two scalar functions of the thermal velocity c.

Once A and B are determined, by Equations (V.6) and (V.8) the

viscous stress tensor and the heat flux vector may thus be cal-

culated. Indeed, these assume the same expressions as the Navier-
Stokes and the Fourier laws,

" + ox, / "-gg '
(VI.5)

qi = k aT
axi

and the viscosity coefficient # and the coefficient of thermal con-

ductivity k are obtained from the functions B and A, resp., through
quadrature. The Chapman-Enskog solution, i.e., to 0(_) only, brings

n,_t th,_r,_hy th,_ .o_*._C÷ed ...1_,4_*...¢ *L ........ *:----,

as well as providing a theoretical means of evaluating _ and k with
suitable choices of the molecular model.

When the solution is carried out to 0(_2), the details are even

more tedious and the resulting formulae for P[j and qi are neces-

sarily much more complicated. Because ¢ contains the spatial
gradients of temperature and velocity, the left-hand side of the

Boltzmann equation now includes second derivatives and products
of first derivatives of these mean flow variables. The time deriva-

tives, on the other hand, turn out to be always capable of elimination

in favor of the spatial derivatives. The viscous stress tensor and

the heat flux vector are thus dependent only on the spatial variations

of the mean flow variables. This peculiar set of solutions is some-

times referred to as "normal solutions." When the P_ and qi from
the solution to 0(_ 2) are substituted into the hydrodynamic equa-

tions, the result is known as the "Burnett equations." Since higher

order derivatives occur, more boundary conditions than for the

Navier-Stokes equations are generally required; such conditions
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must be formulated for the solution of the problem. But, although

to O(e2), if Equation (V.1) is regarded as an asymptotic expansion,

the Burnett equations do not necessarily provide better accuracy.

We shall now apply the Navier-Stokes equations to the one-

dimensional steady shock problem, which may be stated as follows:

Given a uniform stream of velocity Ua, pressure pa, density pa,

find the solution which permits a smooth transition into another

uniform stream downstream. The final velocity Ub, pressure Pb

and density Pb must satisfy the conservation laws of mass, momen-

tum and energy, and may thus be regarded as included in the

u,
¢

FIGURE 6. Detail of Shock Wave

data Ua, p_, and p_. As is well known, the relation between U_ and

Ub, p_ and Pb, etc. (i.e., between the downstream and upstream

quantities) are the Rankine-Hugoniot relations, in which the key

parameter is the Mach number,

Ma = Ua/'V/ ('YPa/ Pa) ;

and, to require the entropy change Sb- S_ > 0, we must have

M_ > 1, then Mb < 1.

The detailed calculation has been carried out by various authors.

Let the attention be focused on a "shock thickness" L defined

by the maximum slope and the asymptotic values of one of the
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flow variables, say U, as sketched in Figure 6. Without explicitly

writing out the governing equations, we are content with some

general information from simple dimensional reasoning. The gas

is characterized by its material properties ua and ka (both are func-

tions primarily of the temperature for a given gas), and the flow

may be characterized by the prescribed U_, p_, and Ma. But a

result of the Chapman-Enskog solution is that u and k are in fact

proportional to each other. Hence the solution must yield

L = L(U_,p_,Ma, tL_).

By dimensional homogeneity, it follows

L = ___a F(Ma).

Since #a _ p_k_ c-_, the above predicts

L _ _ F(M_).

The detailed calculations give F(Ma) _ 0(1) for all finite M, > 1.

Thus we conclude that according to the Navier-Stokes equations

the shock thickness is 0(k_)--in other words, most of the changes

occur within a distance comparable to the (upstream) mean free

path. However, except for weak shocks where the difference between

T_ and Tb or U_ and Ub is small, the restriction _ << 1 will be

violated, and the significance of the result is open to question.

The Burnett equations have been applied by Zoller [24] to the

shock problem, which happens not to have any ambiguity regarding

the boundary conditions. The solution gives a somewhat larger

shock thickness at the lower Mach numbers, but predicts oscilla-

tions in the profiles at M_ about 1.3 and breaks down when Ma

goes beyond about 2. Available experimental evidences do not

support the last two rather peculiar results. (See, e.g., Sherman

and Talbot [19]). As a test case, it is often thought of as an

indication that the asymptotic expansion perhaps should not be

carried beyond the Chapman-Enskog level.

VII. Methods based on the moment equations. Abandoning the

expansion in terms of a small parameter e, we look for alternative

ways of finding an approximate solution of the Boltzmann equation,

Equation (IV.3). Similar to the Rayleigh-Ritz or Galerkin methods
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often used in, e.g., vibration problems, a trial function with a

number of adjustable parameters may be assumed, and the param-

eters are to be so chosen that the exact differential equation will

be satisfied in some average sense. Now the Maxwell transfer equa-

tion, Equation (V.1), may be interpreted as an average of Equation

(IV.3) in the entire velocity space when the weighing factor is chosen

to be Q, including as special cases the hydrodynamic equations,

Equations (V.3), (V.4) and (V.7). The mean flow variables p, Ui,

and T may be thus interpreted as the "adjustable parameters"

present in the trial function, as indeed also the viscous stress tensor

P_ and the heat flux qi. The hydrodynamic equations unfortunately

are too few in number to determine uniquely all these parameters,

except when P[j and qi are somehow related to the other parameters,

for instance, through the Navier-Stokes and Fourier laws. More

equations, of course, could be generated by other choices of Q in

Equation (V.1). On the other hand, for each Q there seems to be

no mathematical reason that the Boltzmann equation must be

averaged throughout the entire velocity space. If the velocity

space is split in two, say _1 > 0 and _1 < 0, for every one of Equation

(V.1) we get two equations: one from the integration in subspace

_1 > 0 and one from the integration in subspace _ < 0. All such

equations will be referred to as the "moment equations," of which

the Maxwell transfer equation itself becomes a special case. By

"moment equation method" we mean in general that after assuming

a trial function as the approximate solution, the parameters are

determined through the choice of a sufficient number of moment

equations of one type or another.

For practical reasons the number of parameters in the trial

function will have to be rather limited. The accuracy therefore

would be quite profoundly affected by the choice of the trial func-

tion and the moment equations. It is obviously desirable to in-

corporate in the trial function as many as possible of the features

of the expected solution. There is yet no guidance on how best

to choose the moment equations. But, in contrast to the asymptotic

expansion, its applicability is not restricted to any special segment

of the entire Knudsen number spectrum.

(A) Grad's thirteen moment equations. As alluded to in the

above, by examining the hydrodynamic equations, it would be
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natural to take the flow variables p, Ui, T, as well as P_j and qi as

the parameters in the trial function. This is precisely what Grad

proposed to do in [6]. Because of the symmetry the apparent

number of parameters is 14. One of these, however, is redundant,

since p = pRT=- (1/3)Pii. The net number of parameters is

therefore 13, and eight more moment equations are needed beyond

the hydrodynamic equations. Grad's choice was to use again the

Maxwell transfer equations but with Q = cicj and ciJ. Out of the

nine equations that result, one of them is also redundant because

the "energy equation," Equation (V.7), from Q = cici is already
accounted for.

More specifically, the distribution function which Grad took

as the trial function is of the form

[(VII.l) f = [m_ 1 Jr 54pc,,qi croCi -- -_m p C_ J

where ft0_ is the local Maxwellian, and cm = 1/x//_ as before. It

is easily verified that the averages -p<cicj) and -p<(1/2)cic2>

calculated with Equation (VII.l) are in agreement with the defini-

tions of P_ and qi according to Equations (V.6) and (V.8). In fact,
it might be remarked that Equation (VII.l) could be written

down directly from the Chapman-Enskog solution by replacing
,L_n_.... ,_,,_.l"_;+,,_j....._nd temnerature, gradient terms in the latter with

P_ and qi through Equation (VI.5). Generalization of EquaLion

(VII.l) is possible, as Grad pointed out, by including in the bracket

higher order polynomials in c_ orthogonal to the terms present

(the "Hermite polynomials"), amounting to a series expansion

of the correction to the local Maxwellian in terms of these poly-

nomials. (Additional parameters and moment equations will then

be required.) By limiting to Equation (VII.l), the deviation from

the local Maxwellian therefore is implied to be relatively small.

With Q= rncici, Equation (V.1} becomes

0 0

-g-ip <c_c_>+ -g-_xp (c_cj_,>= <Apc_cj>_o.

or

0 0 0
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The left-hand side averages can also be evaluated with Equation

(VII.l) but the right-hand side depends on the molecular model.
The most convenient model is the so-called Maxwell molecule,

which repels another like molecule with a force proportional to

r -5, r being the distance between the two molecules. For such

molecules, the equation finally may be written as

a 0 Ukp[i+2(Oqi aq r 2 aqk_
0--[P_ + _ -5 \OX r -_ Oxi 3 5ir-ZXkXk]

_, OU r _, OUi 2 6irp, OUk
(VII.2) + Pik-_Xk + PJkO-_k 3 Ox_

(OUi OUr 2 _ OUk_ _ P P[r
- P \_x_ + Tx, _ " Ox, /

where u denotes the expression that gives the viscosity coefficient

according to the Chapman-Enskog solution for the same molecular

model. Likewise, with Q = (1/2)rncic s, Equation (V.1) leads to

Oqi [_ O_.O_..._Ujqi..__7 0Ui 2 / OUj OUj'_ot ox, _ qj_ +_ Lqr-_x,+q,_ )

,[ l•. , ORT Pu oPJk _ 6rk-ZXkXk(VII.a) +RT_ +7P 00xr p _

50RT 2t)
-- qi.

2 p Oxi 3u

From Equations (VII.2) and (VII.3), we see that in Grad's solution,

there is considerable interaction between the stress tensor and the

heat flux. More striking when compared with the Chapman-Enskog

solution is the presence of the explicit time derivative term in both

equations. Thus, if there are no spatial variations, the equations
reduce to

Opt = _P p[j,
Ot _J #

0 2p
qi -- qi.

Ot 3 #

A relaxation phenomenon, nonexistent in the Chapman-Enskog

solution, is now predicted. The time constant is O(#/p). Since

# ,-_ p_,_,
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p_X X 1

p _pRT _"=c _=0

which is of course the expected order of magnitude following

Equation (IV.5) as discussed in the previous section. But here

the result is more quantitative and in particular P[i and qi are
found to have somewhat different relaxation times.

Of considerable interest is the fact that both the Chapman-

Enskog and Burnett formulae for P,'i and qi can be obtained from

the Grad equations, even though the Grad equations are obtained

from a distribution function, Equation (VII.l), that is at the level

of the Chapman-Enskog solution only. This is done by regarding

Equations (VII.2) and (VII.3) as definitions for the right-hand

side quantities, namely, P[j and qi. If P_ and qi are small, the

effects of the presence of these quantities in the left-hand side

may be determined through an iteration process, starting from

P_ = qi = 0. The first iteration then gives precisely the Navier-

Stokes and Fourier laws. The second iteration gives the Burnett

result, after eliminating (OUjOt) and (OT/Ot) by means of the

hydrodynamic equations. This feature of the Grad equations is

naturally satisfying. More important to note, however, is that

considering the effort in achievhig _- _ ..... _._1_,_ n,f tn

say the Burnett, solution, it also demonstrates the power of the

moment equation method when properly used.

We skip over the question of the boundary conditions for the

Grad equations, which have been examined to some extent by

Grad himself. As applied to the one-dimensional steady shock

problem (Grad [7]) at lower Mach numbers these equations

yield solutions which are rather close to the Navier-Stokes result,

giving a slightly larger shock thickness; but for Mach numbers

greater than about 1.65, again no solution can be found. This is

to some extent rather disappointing. The difficulty could only be

attributed to the chosen form of Equation (VII.l), which ceases

to provide a good approximation when the molecules are far from

being in a state of quasi-equilibrium. For lower Mach numbers,

i.e., weak shocks, the up- and downstream conditions are not too

different from each other, the distribution anywhere within the

shock thus deviates little from an average constant Maxwellian.

Such is, of course, far from being the case for large Mach numbers

and strong shocks.
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(B) Mott-Smith's bimodel distribution. We now recognize that

for strong shocks a trial function not restricted to quasi-equilibrium

is necessary. A very simple choice was offered by Mott-Smith in

[14], who assumed that it might be taken as a linear combination

of the up- and downstream distribution functions,

(VII.4) [ = aa(x) [_o) + ab(X) [_0)

where aa(x) and ab(x) are the adjustable parameters. However,

since f fd} = f f_°)d} = f f_(°)dl_ = 1, we require

(VII.5) aa -_ ab = 1.

If the x-axis is in the direction of flow, the boundary conditions are

x-_ - o_, aa-_ 1, O_b---_0;

(VII .6)
X---_ + ¢o, aa--* 0, ab--'*l.

The "bimodal" nature is clear, as for given x the molecules may

be regarded as a mixture of two groups maintaining either the

up- or downstream characteristics.

There is now in effect only one adjustable parameter. To

determine this parameter, Mott-Smith left the hydrodynamic

equations alone but employed a moment equation obtained from

Equation (V.1) with Q--}12, or }_, which then was solved by im-

posing Equation (VII.6). The hydrodynamic equations provide

as usual the Rankine-Hugoniot relations, expressing all downstream

properties in terms of those upstream. A solution for aa, say, at

all M, > 1 was shown to be possible and the flow variables computed

as averages. The shock thicknesses so determined from the two

choices of Q differ between themselves by 10 to 25 percent de-

pending on Mo. This difference, of course, reflects the uncertainty

due to the arbitrariness in choosing Q. There have been consequently

discussions attempting to arrive at a criterion for the selection

(e.g., Rosen [16], Sakurai [17]). More realistic molecular models

have also been used in evaluating the collision terms of the moment

equation (Muckenfuss, [15]). At the lower Mach numbers, the

Mott-Smith shock thickness is much greater than that from the

Navier-Stokes or Grad equations, and is generally considered

inaccurate. A comparison is shown in Figure 7, which is taken

from [23].
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FIGURE 7. Comparison of Reciprocal Shock Thickness
for Monatomic Maxwell Molecules _

zReprinted from Ziering, S., Ek, F., and Koch, P., Physics of Fluids, 4 (1961),

975-987 with permission of the publishers.
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(C) Methods using half-range distribution function. We have

mentioned that the shock wave is a convenient example in rarefied

gasdynamics because of the absence of solid boundaries. When a

solid boundary is present, the molecules rebound from, or rather

are emitted by the solid boundary, and usually have "forgotten"

most of their past history. In fluid elements near to the solid

boundary, therefore, the distribution function would be discon-

tinuous in the velocity space, in the sense that those moving

toward the solid boundary and those going away from it would

require quite different expressions. An expansion of the Grad type

in terms of continuous functions, Equation (VII.l) for instance,

would need a very large number of terms to approximate a dis-

continuity adequately. If the discontinuous nature is recognized

beforehand and taken care of separately, however, the remainder

would be much easier to approximate.

This observation was exploited by Gross and Ziering [8] in

their investigation of several problems involving the geometry

of two parallel plates when the gas between may be highly rarefied.

Let the direction normal to the two plates be x in Figure 8. The

molecules are assumed to be composed of two groups according

to the sign of _. Then for the distribution function we write

(VII.7) nf=n=_f± for _IX0

where n± are functions of x, and f± are defined only in the half

spaces _IX 0, resp., hence referred to as half-range distribution
functions. The functions f± used by Gross and Ziering are ex-

pressed in terms of the Hermite polynomial, similar to Equation

(VII.l), slightly modified because the orthogonality condition

now is to be applied in the half spaces. Compared with Grad's

approach, with the same number of parameters in the expansion,

y

d[ (2
t_.
(1

_ X

FIGURE 8. Flow between Parallel Plates
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evidently the half-range distribution function contains twice as

many unknowns; consequently, twice as many moment equations

are needed for their determination. Gross and Ziering then split

up each of the Maxwell transfer equations, Equation (V.1), into

two by carrying out the integration in the two halves of the

velocity space separately. In a Grad-like expansion of the half-

range distribution function, the adjustable parameters lose the

physical significance as corresponding to P_j, qi, etc., which are,

by definition, the averages over the whole velocity space.

Application of the technique has been limited to several

"linearized" problems where the relative velocity or the tempera-

ture difference of the two plates is small. In such cases, the half-

range distributions were expanded around a constant Maxwellian,

and the calculation was rather straightforward.

An alternative choice of the half-range distributions in Equation

(VII.7) is the "two-stream Maxwellian" distribution proposed by

Lees [ll]. The form is taken to be

= exp[-- _(_ u±) 2]

where ._ and u± are the adjustable parameters, in addition to

n±, to be determined by the moment equations. In fact, to generalize

the method Lees adopts a "line of sight" prmcipie which divides

the molecules into groups as if in free molecule flow. In the problem

of the gas between parallel plates, there are thus the same two

groups as in the half-range representation of Gross and Ziering,

each moving toward one of the walls. For the case of an arbitrary

body moving in an unbounded gas region, at the given point P a

pencil of rays may be drawn to form a cone tangent to the body,

as shown in Figure 9. These molecules in a volume element at P

l ,_.

'\\\_

FIGURE 9. The Line of Sight Principle
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coming from the body, if in free molecule flow, would have their

velocity lying within the cone I. These are taken by Lees as group I.

The rest are all taken as group II. The "dual-range" character

of the distribution is then expressible in the same form as Equa-

tions (VII.7) and (VII.8), except replacing suffices "_" by suffices

"I" and "II." For the needed moment equations Lees prefers to

maintain the whole-range transfer equations, Equation (V.1),

with successive Q's similar to Grad's that led to the thirteen moment

equations. In contrast to Grad's distribution, there are now, how-

ever, only ten parameters ni.n, _l,II and ui.H, none of which, it may

be noted, has any significance as physical observables except in

dimension. Regarding the transfer equations corresponding to

Equations (VII.2) and (VII.3) as expressions for P[i and qi in

terms of the left-hand side terms, we are inclined to conclude that,

together with the hydrodynamic equations, there still should be

thirteen equations for the thirteen variables (p, Ui, T,P[j, qi) at

this level of approximation. In general the ten parameters inherent

in the "two-stream Maxwellian" appear too few in number to be

really self-consistent. When applied to the parallel plates problem

with large relative velocity, some difficulty was indeed experienced

by Lees and Lin [12]. Their mention of the possible improvement

by using skewed "two-stream Maxwellians" amounts to an effort

toward additional degrees of freedom.

A further point of criticism may be directed at the "line of

sight" principle. The grouping of molecules following this principle

is of course correct in the free molecule limit or very close to the

body surface, but the principle seems to be rather irrelevant after

the molecules have gone through several collisions. Its conse-

quences therefore need not agree with the result from the Navier-

Stokes equation in the conventional continuum limit. This drawback

is illustrated in the problem of the cylindrical Couette flow (in

the annulus between two rotating concentric circular cylinders)

investigated by Ai [1].

In spite of these objections, the "two-stream Maxwellian" is

relatively easy to work with and together with the "line of sight"

principle can be used to set up, at least formally, the governing

equations for flows involving arbitrary geometry and large devia-

tions from quasi-equilibrium. It would be of interest to see the
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solution of the shock problem by this method, which unfortunately
is not available.

VIII. The BGK model equation and the shock solution.We have

discussed above some of the approximate methods of handling the

Boltzmann equation. An entirely different approach is to try for

exact solutions by simplifying the Boltzmann equation itself. The

most well known of such simplifications is the BGK or Krook

model (Bhatnagar et al., [2], Krook [10]). Looking back, we

have the Boltzmann equation, Equation (IV.5),

D,n/, = - 01 [nfl - nil].

The complications are all contained in the right-hand side terms,

which will now be approximated.

First of all, the dependence of 01 on the molecular velocity

_c_) is clearly a matter of detail. It seems reasonable to approxi-

mate it with simply 0(r,t), an average for all molecules. To

simplify the very complicated /1, the choice is made so as to

preserve the following important properties of the exact equation:

(a) As O-0 co, f_._.,f(o), the local Maxwellian.

(b) In the transfer equation, Equation (V.1), (hnQ)_ou = 0 for
the collisional invariants Q= m, m_, mc2/2.

(c) There is an "H-theorem."

Krook took directly f= f(0); the model equation is thus

(VIII.l) D_n[_ = - nO_(f_ - [(o_).

That the right hand satisfies the requirements (a) and (b) is

immediately obvious. It can be shown that condition (c) is also

fulfilled. The rate of change of the function n/is now proportional

to its departure from the quasi-equilibrium distribution/(0_. Hence

Equation (VIII.l) may be regarded as a relaxation model. The

equation is, however, only apparently linear, since the parameters

/_ and U in f(o) remain to be averaged over the unknown f.

All the previous approximate methods of treating the Boltzmann

equation can, of course, be applied to Equation (VIII.I). The

Chapman-Enskog type of solution, for instance, is obtained by

writing

f = fc0_+ _f.I + ....
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By substitution into Equation (VIII.l), the solution for _[(1) is

explicitly given as, dropping subscript "1,"

(VIII.2) _[(1)_ 1_ Dn[(O)"
nO

The dependences on the mean flow gradients V ln T and OUi/Oxj

follow from the same term Dn[ (°) as in the Chapman-Enskog

solution. The Navier-Stokes and Fourier laws are consequently

recovered, except that the viscosity coefficient and the coefficient

of thermal conductivity are more crudely predicted.

The thirteen moment equations of Grad can also be derived

for Equation (VIII.I). The left-hand sides of Equations (VII.2),

(VII.3) are unchanged if Equation (VII.l) is maintained. The

right-hand sides depend on the details of collisions but with Equa-

tion (VIII.l) they can be written down by inspection. The counter-

parts to Equations (VII.2) and (VII.3) are thus found to be

(VIII.3)

-_-[ P_i + A_ = - -OP[i,

-_ qi -_- Bi : - 0 qi

where Aii and Bi stand for all the terms except the time derivative

in the left-hand sides of the corresponding Grad equations. The

only difference lies in replacing the two relaxation times tt/p and

(3/2)(tt/p) with a single time constant 1/O. For this reason, the

Krook approximation is sometimes referred to as the single re-

laxation model. The comparison also suggests that the average

may be taken to be

- p 2p
(VIII.4) 0 =- or

# 3#

depending on whether P_i or qi is the dominant feature.

In the near continuum regime which is adequately described

by the Grad equations, the difference between the BGK model

and the Boltzmann equation amounts thus to a difference in the

Prandtl number Pr - # Cp/k. The correct value is 2/3 for monatomic

gases while from the BGK model the Prandtl number will be

unity. The regime of free molecule flow in the limit 01--_ 0 is un-
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affected by the approximation. Its validity in the transition regime
is rather difficult to assess, although the common belief is that it

should serve as a reasonable interpolation.

The integral equation form of Equation (VIII.l) has been the

basis for a number of applications. For brevity consider the steady
flow problem:

j_l nfl = -- -On[/1 -- [_0)]{VIII ,5)

where Sl is the distance along the direction of (1). Direct integra-
tion yields, after dropping the subscript "1,"

nf=n'['exp[- f,," (_) ds]

(VIII.6)

+exp [--_' (_--)dsl_'nf(°)exp [ ._," (_) ds] (_) ds

where the boundary condition n'f' at s--s' is assumed given.

The integral 9c,;(O/_)ds represents the number of collisions for

such molecules in traveling the distance between s and s', and the

exponential factor is the probability that the molecules from s'

should survive. The second term is the gain of such molecules as
collision products. Since the unknown functions n and f are involved

in the latter, usually an iterative procedure is necessary to achieve

a solution. For near free molecule or near continuum flows, a good

initial approximation of n[ _°) is immediately available. For the

transition regime, the initial approximation may have to be found

by first doing a cruder analysis, such as the Lees method discussed

before. Several problems of the flow between two parallel plates

are thus solved by this method (e.g., Willis [22]).
In applying to the shock structure problem, since the Navier-

Stokes solution is reliable for the lower Mach numbers, and ob-

tainable for any shock strength, it becomes an obvious choice as
the initial approximation. Such was suggested by Burgers [3] in

his analysis of the problem, but without actually carrying out the

calculation. Recently Liepmann et al., [13], apparently inde-

pendently, solved the problem by the same procedure in a computer,

taking-0 = P/u, i.e., Pr = 1. The solution shows no anomaly at

least for Mach numbers as high as 10. A typical comparison against
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the Navier-Stokes solution is schematically as shown. The agree-

ment with the Navier-Stokes profile is very close in the down-

stream half, but the upstream portion is considerably more spread

out, especially at the higher Mach numbers (see Figure 10). This
is understandable since the effective coordinate is really f-Odx,

so the physical distance should be inversely proportional to the

collision frequency, hence the density, which value for the upstream

portion is a small fraction of that for the downstream portion for

the stronger shocks.

11 .... f_,a/Navier-Stokes
u- Ub Krook

O' _x

FIGURE 10. Comparison of Solutions

The Liepmann solution of the shock structure based on the

BGK model is unquestionably the most satisfactory to date. It

is, however, only the exact solution of an approximation to the

Boltzmann equation.

IX. Further discussion of the approximate solution of the Boltzmann

equation. Attractive as the BGK model is, we must not lose sight

of the fact that it does not replace the Boltzmann equation. Better

and better approximate methods presumably could be developed

for the exact equation, and some of them would eventually surpass

the BGK model in accuracy. Thus, we return to a discussion of

the possible improvement in approximate methods, especially from

the viewpoint that these should be applicable throughout the range

from continuum to free molecule flow, as the BGK model is.

To gain some perspective, consider the simple differential equation

d/
(IX.l) _/-- - [+f(°)(t) f(0) given

where _ is a constant parameter of arbitrary magnitude. 2 Equa-

2I am indebted to Professor G. S. S. Ludford for calling attention to a very
similar example in Erdelyi's paper on singular perturbations [5].
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tion (IX.l) evidently embodies the most important features of

the Boltzmann equation, c having the same significance as 1/O.

It is also an analog of the BGK model. The boundary condition

f(0) corresponds to the known distribution at an initial instant,
or the boundary s = s' as in Equation (VIII.6). The solution of

Equation (IX.l) can be immediately written down,

(IX.2) f = f(0) e -t/' + 1 e_t/' [(O)et/,dt

which may be regarded as the simplified version of Equation (VIII .6).
If t is kept fixed and finite, the asymptotic solutions for _--- co

or _--. 0 are easily obtained from Equation (IX.2). For __ co, the
result is

C

while for e--0, we get

(IX.4) f _ f(o) df (°)
- c--d/- + O(J).

The first term of Equation (IX.3) corresponds to the "free-molecule"

flow approximation, and the second term is the equivalent of the

"first collision" correction usually obtained by one iteration from

the free-molecule solution. In the same analogy, the first term of
Equation (IX.4) corresponds to the local Maxwellian in quasi-

equilibrium, and the second term is the counterpart of the Chapman-

Enskog correction. Both types of asymptotic solutions, as we now

see, are not uniformly valid for all t. (Note, in particular, that

Equation (IX.4) can never satisfy the prescribed boundary condi-
tion [(0).) For a given t however large, there is an upper limit of
t beyond which the "free-molecule" type of asymptotic expansion

ceases to be valid. In the other limit, for a given t however small,

there is a lower limit of t below which the asymptotic expansion

for small c is of no value. Although elementary, this demonstration

seems to focus on some of the basic properties of the Boltzmann

equation. The pitfalls of trying to push either type of asymptotic

expansions into the "transition regime," where _ _ 0(1), are thus
obvious.
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The situations for _--_ _ and _-_ 0 are very similar to the prob-

lems of finding asymptotic solutions for low and high Reynolds

numbers, resp., in viscous flow theory. Corresponding to the limit

of _--_o, the "Stokes theory" for very low Reynolds numbers is

known to be invalid in an unbounded fluid at sufficient distances

from the body. In the other limit of _--+0, the analogy to the

Knudsen layer is the boundary layer near the body in conventional

gasdynamics. The boundary layer thickness goes down as the vis-

cosity is decreased. For points at fixed distances from the body

surface, they will eventually lie in the effectively inviscid portion

of the flow if the viscosity is small enough. To see the details in

the boundary layer, the point in question must be made to move

closer to the body surface as the viscosity is reduced, in order to

remain within the boundary layer; then and only then the limit

for vanishing viscosity may be taken. If we change the words

"boundary layer" to "Knudsen layer" and "viscosity" to "mean

free path," the last three sentences describe exactly what should

be done for analysis of the Knudsen layer as e-_ 0.

As also disclosed by the exact solution, Equation (IX.2), the

natural independent variable should indeed be t = tic. We now

keep t fixed and finite but let _ --* 0. If Equation (IX.2) is expressed
in t and then integrated by parts, the resulting expansion is found

to be

[_--[(O)e-t-k[ [(°'- _ _-Jd[(°)l -- e-t[/(°'(0) - _ _df(°) It=o] -4- O(e2).

By expanding f¢0) and df¢°_/dt for small e two alternative forms,

both accurate to 0(_) for finite t, are obtained,

(Ix.5)

(IX.5')

d/(O) ] -f"f(O)e-i+ f(°)(O) - _dT- t=o [1 -e-']

I+_-_- ,=o

f,..,f(O)e-i+= [/(o) -- e_-jd/'°)] [1 - e -F]

d/(°) ][t=ote '-++_ ....
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The second form is clearly preferable since it remains valid as

t--_ _o, merging smoothly into the "outer expansion" Equation

(IX.4) and taking on the prescribed boundary value at t = 0.

It is now possible to estimate more accurately the "thickness"

tK of the Knudsen layer, in the sense that beyond which, to OG),

Equations (IX.5') and (IX.4) agree with each other. The condition

is therefore
~

e-tK _ 0(_ 2)

i.e.,

Or

tK _ O(ln _)

tK _ O(e lnt).

In fact, no matter to what finite order of _ is expanded the asymp-

totic solution Equation (IX.4), the same argument will show that

tg is always O(tlnD. The Knudsen layer remains to be treated

separately.

Returning to the central problem of formulating an approximate

solution for the Boltzmann equation, we suggest that the distribu-

tion function should exhibit much the same basic features as the

solution Equation (IX.2) of the simplified model. In a moment

equation approach, for instance, a reasonable choice of the trial

function might resemble Equation (IX.5'). If we assume an average

collision frequency O as in the BGK model, a convenient form is

(IX.6)

--Fnofo[i-exp[-_'(_) ds]]

where nolo is chosen to contain the adjustable parameters to be

controlled by satisfying the moment equations. Since we work

with only the average properties p, Ui, P_, qi in the moment equa-

tions, there is considerable leeway in the choice of n0fo, the main

restriction being that it must reproduce the Navier-Stokes and

Fourier laws in the limit of 0--_ co. The free-molecule behavior

is guaranteed by the n'f' term, which automatically divides the

molecules into groups depending on their "origin." No further
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assumption such as the Lees "line of sight" principle is now necessary.

It may be noted that the term analogous to the last one in Equa-

tion (IX.5') is omitted in Equation (IX.6) for brevity. The effect

presumably is comparable to the net difference from alternative

choices of nolo. It is to be emphasized, however, that Equation

(IX.6) is not meant to be so assessed. Only the form is suggested

by the BGK model. The approximation itself is adjusted to satisfy

the moment functions of the exact Boltzmann equation, and any

molecular model may be adopted for evaluating the collision integrals.

A source of difficulty in the use of Equation (IX.6) is the concept

of an average collision frequency O. As in the discussion of the

BGK model following Equation (VIII.3), the choice of O appears

to be either p/_ or (2/3)(p/_). Besides this ambiguity, any choice

of a single average O of course overestimates the mean free path

of the fast-moving molecules, as shown by the smaller numerical

factor 2/3 needed for matching the heat transfer by means of the

BGK model. In assuming Equation (IX.6), on the other hand, we

have effectively used the BGK model to suggest a way of grouping

the free-molecule-like and Navier-Stokes-like molecules. Thus there

is no strong reason not to allow O to vary somewhat with the speed

of _, thereby compensating for this source of error. The refinement,

however, may or may not be worthwhile, because, again, the net

difference might be comparable to that from the alternative choices

of nolo. In other words, the nature of the approximation Equation

(IX.6) is, as a first step and like the BGK model, only to guarantee

a smooth transition between the free-molecule and the Navier-Stokes

limits. The resulting macroscopic equations are already rather

cumbersome to attack, and have been solved only for the simple

cases of the linearized plane and cylindrical Couette flows (Shen

[18]). It seems yet premature to introduce further complications.
To conclude this brief survey of the current status of rarefied

gasdynamics, we reiterate that our emphasis has been on the treat-

ment of flow problems in terms of the observables such as mean

velocity, pressure, temperature, shear stress and heat flux. The

aim is thus essentially to look for the replacement of the con-

ventional Navier-Stokes and Fourier relations in the hydrodynamic

equations of motion, applicable throughout the entire range of

Knudsen numbers. It might be said that to various degrees of

approximation methods are indeed slowly emerging. Unfortunately
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the geometry of the problem will always enter into resulting equa-

tions, so in effect special attention is required for each class of

problems defined by its geometry. These equations furthermore are

much more complicated than the Navier-Stokes, and our experiences

are still confined to the simplest possible examples. The shock wave

structure, because of its independence from solid boundaries, has

been one of the ideal testing grounds for workers in this rapidly

advancing field.
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Models of Gas Flows

with Chemical

and Radiative Effects

F. K. Moore

I. Differential equations and basic models. In the course of this

chapter we will consider flows with chemical activity and in which

radiative effects are of significance and, in particular, those pertain-

ing to re entry and propulsion. We will be concerned mainly with

chemical effects, and will not go into detail in connection with

electrical (ionization) effects.

a. Entry Phenomena. Briefly, the hypersonic entry of a vehicle into

an atmosphere may be described as follows: Initially, as the vehicle

begins to penetrate the very rarefied outer atmosphere, it i_ _uo-

jected to a bombardment by the gas particles in its path. In the

region where the mean free path of the molecules is very large com-

pared with the dimensions of the body, the rebounding molecules

do not interfere with other approaching molecules, and the vehicle

suffers only the retarding effect due to direct collisions with the

particles in its path. Further penetration into the denser regions of

the atmosphere results in the establishment of a "flow field," charac-

terized by a mean free path somewhat less than the characteristic

dimension of the vehicle. Thus, rebounding molecules encounter

other molecules in the region surrounding the vehicle, so that the

particles in the path of the vehicle are, to some extent, warned of its

approach. As still lower altitudes are reached, these warning signals

94
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coalesce into a strong shock wave standing ahead of the vehicle.

Atmospheric entry, then, involves a progression from free

molecular flow to continuum flow. In the region of the shock,

collisions promote excitation of higher levels of internal energy of

the molecules (vibration and rotation) resulting in first, dissociation,

and second, if the velocity is sufficiently high, ionization of the gas.

The flow field is shown schematically in Figure 1. Such flow fields of

highly excited air are studied to determine rates of heat transfer at

the surface of the vehicle. In their study, one must consider the

behavior of the "real" gas at elevated temperatures. Furthermore,

the nature of the flow field governs the mechanics of the motion of

the vehicle, the drag being of particular interest. One also finds that

ionization of the flow field affects communications with the vehicle.

Thus, the study of high-temperature gas is of great importance.

bow shock/ 7 pansi°n

/ ///./p recompression shock

I _/////H_ "dead air" - *_--_bturbulent wake

/ ,-  epa at'°np°int pa at,onpo nt\
FIGURE 1. Aerodynamic Phenomena at High Speed

As the temperature of a gas is increased on l_assing through a

shock, compositional changes will take place. Considering air, we

have the following dissociation processes:

O2_ 0 + 0

N2-_N-_ N

as well as those involving NO formation, ionization, and others.
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Figure 2 shows the concentrations of air versus temperature, at

equilibrium. We note from the figure that oxygen shows a marked

increase in dissociation at about 4000°K, whereas nitrogen does not

dissociate appreciably until temperatures in excess of 8000°K are

reached. 8000°K corresponds to velocities greater than those en-

countered in earth orbits, such high speeds being characteristic of

entry from a lunar trajectory.

l P_

N 1

8 1
._..; --
e 100

1 I I i ! I
1000

4000 8000 12000 16000 °K

FIGURE 2. Composition of Air

In atmospheric entry problems, radiant heat transfer may be

important. At orbital velocities, radiant heat transfer is relatively

insignificant. However, at escape (capture) velocity typical of a

lunar flight, radiation represents a major portion of the heat transfer.

The following relations indicate the relative importance of convec-

tive and radiative transfer, and the dependence upon velocity: Let

q be the heat load to the vehicle (see I I _. Then:

q,_._ ,_ (p/ L) "_U:._,,,

q,,d _ p:_/'_LU_°,

where p is the density, L is a characteristic body dimension, and

Uo. is the vehicle velocity. The very strong dependence of radiative
transfer on velocity is to be expected, because q,_ = T 4 and T ¢_ U2,,,.

Thus, one finds that at 25,000 ft/sec, q_d is approximately 10% of the

heat load, while at 35,000 ft/sec, q,_ is the dominant heat load factor.
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b. Nonequilibrium. The composition of the gas at any point in the

flow field is, of course, dependent upon the chemical kinetics of the

gas. If the gas chemistry does not have time to equilibrate, that is

to say, if the composition is not the same as the equilibrium com-

position for the local temperature, one has a nonequilibrium flow.

At very high speeds and very high altitudes, flows may be dominated

by nonequilibrium effects.

Of course, in a general sense, all flows are "nonequilibrium" situa-

tions. In basic fluid dynamics, the Reynolds number

Re = p U® L/tL

is a governing parameter, where U® is a characteristic velocity, L is a

characteristic length, p is the density and _ the viscosity. Now, the

Reynolds number is in fact a comparison of relaxation time with the

time of passage of flow. Consider the time required for a diffusive

process to occur, i.e., the relaxation time:

rret_ = pL2/#.

For very large distances, a very long relaxation time is required,

similarly, diffusive effects are slow for very small viscosity. Now,

compare r_ with the time of passage of the flow over a body of
characteristic dimension L:

rL = L/U®.

The ratio of these two characteristic times is

(I) r_a__ pLU® = Re.
TL /_

This ratio isjust the Reynolds number of the flow, and compares

the time for a mixing process to occur with the time of flow passage

over the body.

Similar parameters appear in other flows, and by way of com-

parison,we note that using the time of diffusionof a magnetic field

yields

L2_ma
--= LU®_m_ - Rm,
L/U.

where Rm is the so-called magnetic Reynolds number. The ratio of

chemical relaxation time to the time of passage yields the following:
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(2) __ _he_
rL L� U_"

This may be of unit order in high-speed flows at high altitudes.

For ordinary, viscous hydrodynamic flows, Re >> 1, i.e., the diffu-

sive relaxation time is much greater than the time of passage. In this

case the flow may be said to be dynamically "frozen," there is

insufficient time for the decay process to reach equilibrium. If the

chemical parameter r_/rL >> 1, we may speak of chemical freezing.

Now, if the ratio "rch_/rL = 0(1) one encounters serious difficulties in

analysis, just as in ordinary hydrodynamic flows one encounters

analytical problems when the Reynolds number is of order unity. On

the other hand, if the ratio is much less than one (equilibrium flow),

great simplifications result.

The study of chemically reacting flows is, as one would expect,

considerably more complicated than nonreacting flows. In the latter,

one finds similarities from dimensional analysis, and these can be

used to great advantage. In chemical kinetics, however, such simi-

larities do not generally occur, and therefore one must attempt to

solve particular problems and hope to find simplifications which will

render the analysis tractable (see [2]).

c. Equations of Motion. From basic fluid dynamics we have the

continuity equation:

Op
(3) --+ v • (pv) = 0.

0t

Since the gas consists of several constituents we require a continuity

equation for the separate constituents:

Dci 0
p-_ -- Wi = - --On(pCiUni) ,

D 0
_-v.V

Dt Ot

and the other symbols are:

ci, the mass fraction of the ith constituent;

p, the density;

Wi, a production term to be discussed shortly;

(4)

where



MODELS OF GAS FLOWS 99

O/On, the gradient normal to the surface;

uni, the diffusion velocity of the ith constituent.

Equation (4) states that the rate of increase of the particular species

is equal to the rate of production (by chemical reaction) of that

species, minus the diffusion of that species across some control
surface. We note that:

__,ci = 1.
i

The bracketed quantity on the right-hand side of Equation (4)

deserves attention. We can write:

/_ ck_ o cs + | * ,, ___. lOlnp
pciu.,= prnikL-_k ] ?rniDij)Onl rnick I ZmJc, I

L _,m_ L ,,n, j
+ DT 0 In T

On

The terms here are:

Dii, diffusion coefficient for inter-diffusion of con-

stituents;

O lnp/On, the "pressure diffusion," i.e., due to gradp; (In

most flowfields Op/On may be neglected here.)

DT(o In T/On), thermal diffusion, diffusion due to temperature

gradient only; this is usually neglected, since

the coefficient is small.

Thus, u_i is seen to depend largely upon the concentration gradient.

The equation of state is:

where R is the universal gas constant. The momentum equation is:

Dv+ = 0 / 0v(6)
p_-_- Vp 0-n _ _n ] "

The energy equation is:

(7) P Dt at v" VP--qR=#\On/ +_nLX_n-°_:u",H',
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In these, we identify the following quantities:

H, specific enthalpy, and H __,iHi __,ici(hi-4-L_o_i

where hi is specific internal enthalpy and h}°_ is the

(potential) chemical energy of dissociation;

qR, a heat source term, for example, radiation heating;

_(Ou/On) 2, the viscous dissipation term;

XOT/On , the heat conduction term;

__,iuniHi, the diffusion of enthalpy.

d. Lumped Constituents. A useful approximation, or gas model,

frequently employed is that of "lumped constituents." In effect, we

normally use the lumped constituents idea in aerodynamic problems,

letting air take on an average molecular weight, etc., neglecting

interdiffusion of constituents as well as chemical reaction. For low-

temperature problems, it is not necessary that the constituents be

similar.

In cases where chemistry is involved, we can use the same

approach to simplify the analysis. Briefly, for air, we have a mixture

of 02 and N2, and in dissociating flows we have, in addition, O and N.

Let us combine these four constituents, considering the mixture of

O and N as a monatomic gas which we denote by A, and the mixture

of 02 and N2 as a diatomic gas, which we denote by A2. We then have

a two-constituent gas, and the i's of Equations (4) to (7) may have

the values 1, 2. Now, this "lumping" requires that the molecular

weights of the two gases be nearly the same, as well as that there be

no net diffusion or reaction between gases lumped in the same group.

That is, we assume that the interdiffusion of O and N is small, and

that the reactions between O and N are negligible, and similarly for

the "A2" portion of the gas. It is also necessary that the heats of

dissociation be nearly the same for both reacting pairs. Thus, we

shall consider reactions of the form:

A2--_ A + A.

and the right-hand side of Equation (4) becomes:

Oe i

pciu,, i = pD-o--nn.

e. Binary Mixture. We will now use the subscript 1 to denote A

atoms, and 2 to denote A2 molecules. The equation for specific

enthalpy may then be written:
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RT 4c 7
(8a) H=__2{5c1+ 2I_+1/ TJT \-]_ -co)

where 5RCl/m2 is the specific heat at constant pressure of a mona-

tomic gas, 7Rc2/2m_ is that of a rotationally-excited diatomic gas,

the term c2T_/T(e Tv/T- 1) accounts for the energy of vibration, and

finally, Clh_°_ is the energy of dissociation (see [5]). T_ is the character-

istic temperature for vibration. Since T_ is about 3000 ° K for air, the

quantity TJ4T(e T_/T- 1) _ 0 for air at room temperature. Also, we

note that

f. LighthiU Ideal Dissociating Gas. The foregoing gas model is not

calorically perfect, for Equation (8a) indicates that the specific heat

depends upon temperature. In [5], Lighthill observed that the

bracketed quantity above was nearly constant for a large range of

temperature and he assumed that TJT(e %IT- 1)----½ (midway

between the extremes 0 and 1) thus rendering the model calorically

perfect. This is the first Lighthill gas approximation, and with it we

have:

(8b) H = R__T(4 + cl) + clh_ °_
m2

which is the relationship for the enthalpy of an ideal, calorically

perfect, dissociating gas. A further approximation due to Lighthill

is as follows: Consider the equilibrium concentrations of the atoms

and molecules, according to the law of mass action,

( c2 ) =P__D_De-(2h(O)/(RT/m2_(9) 1--_---c _ p

where c is the atom concentration. From this equation it is seen that

at high altitudes, i.e., low densities, one could expect to find higher

concentrations of atoms. The characteristic density is actually

dependent upon temperature:

PD cc x/(T)(1 - eTv/T).

For temperatures of interest, PD exhibits a relative maximum, and is

fairly constant, and is therefore assumed constant, without introduc-

ing serious error. In fact, we may add to Lighthill's argument the
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observation that PD reaches a maximum at precisely the temperature

2To
T-

e T#T- 1

This is the temperature at which Equation (8b) is exact; i.e., the

square bracket of Equation (8a) for specific enthalpy is just equal to

unity. Thus, Equations (8b) and (9) are consistent descriptions of a

dissociating gas which is just 50% excited vibrationally.

The foregoing "Lighthill model" is not particularly powerful

analytically, though Tv is eliminated as a parameter. It does not

result in any appreciable simplification in machine calculations. The

main value of the model has been that it provides a standard dis-

sociating gas in terms of which various computations and theories

may be compared.

g. Dissociation Kinetics. Consider the reaction

hR

M +A2_A_- A+ M,

where M may be A2 or A. M is the third party to the process and is

the particle which, in collision, shares the energy of either dissocia-
tion or recombination. We can write

--= T-¢'+') F k_' 1F ;D ](10) wl, const: T +c[1-c+ 2 cj[(1--c)e -TO/T- e2 ,

where W1 is the production rate for atoms (zero for equilibrium), and

T - s is a temperature dependence factor. This equation embodies the

relation between kD and kR at equilibrium (W1 = 0) obtained from

the mass action law. The first square bracket accounts for the

different third body in the collision, i.e., whether M is A or A2. The

term (1- c)e -TD/T in the second bracket deals with the forward

reaction (dissociation), while the term --(p/pD)C 2 deals with the

reverse reaction (recombination). Substituting for P/PD from Equa-

tion (9) renders the second square bracket zero, which is the result

desired for equilibrium. It is important to note that the dissociation

in term Equation (10) is second order in density, while the recombin-

ation term is third order in density.

In addition, it is noted in [3] and [4] that from experiment:

k_ ) T
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Freeman, in a paper emphasizing the Lighthill model, has, in

effect, taken the first square bracket to be equal to a constant. This

simplification of Equation (10) is therefore often taken as one of the

specifications of Lighthill's ideal gas.

II. Sound waves.

a. Perturbation Equations for Chemical Nonequilibrium. For sound

waves (acoustics) with chemical relaxation and radiative effects, we

first write the perturbation equations for a binary mixture of gases.

The primed quantities denote the perturbations, e.g.,

P _ Po'_- P', P = Po + P', v=v'.

The linearized equations are then:

Continuity: Op____'+ po_7 . v' = 0
0t

0v t

Momentum: p • _- + Vp' = 0

OH' Op'
(11) Energy: P " Ot Ot - 0

pt c' ' T'
State: - -_ p-- + --

P0 1% Co po To

Production Equation: W: I( 1 c)e_TD/T PC21-- CC -- -- .

Po

From Equation (9) [c2/(1- c)]_= (pD/p)e -rDjr, we substitute in

Equation (10) for P/PD and obtain

WI [ (1-- C)e-TD/T -- C2(1-- Ceq)--cc 2 e-TD/T]
p Ceq

which, after factoring, including [((1- C_q)(1- c)/c2)e -rDIT] in a

proportionality factor, and changing sign, gives

(12) W1 [ c2 c__ 1
p 1 -- c 1 -- c_j"

All the quantities lumped into the proportionality factor are func-

tions of state. Now, if equilibrium prevails, c--c_ and we have

W1 = O. If c ¢ c_, the expression indicates that the production rate

will vary, to cause the mixture to tend toward equilibrium. In this
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derivation we express the mass fraction as c = Co+ c' and assume

that c' is a small quantity. We also note that c_ = Co+ C_q, where Co

is the free-stream equilibrium concentration, to account for the de-

pendence of C,q upon local temperature and density. From the

proportionality, Equation (12), we can linearize the term

C2 2Ceq

1 --c 1 -cm

to obtain Co(2 - Co)(C' - c_q)/(1 - Co) and finally write

W1 1 0c'
-

(13) po r Ot

Here all the proportionality terms are lumped into r, which is a

relaxation time.

We now generate a sound wave within the gas and examine its

effects. If C_q were constant, one would simply solve Equation (13)

to find:

c' = C_q(1 - e-'/').

This is a relaxation equation, where the concentration goes from an

initial to a final level following a simple exponential curve. However,

since C_qis a function of temperature and density, such a solution is

rarely of value.

We now specify, as in ordinary acoustics, that the wave be curl-

free, so that:

v' = V¢,

where q_ is the potential. The acoustic equation obtained from Equa-

tions (11) and (13) is now

(14) r* 0 _02¢ _ a_V2b ) ___ 02¢ a_V2 _ =
0.

(See [6], [7], [Ill, [12], [13], and [14].)

The second parenthesis is the left side of the usual acoustic wave

equation, with a,, the equilibrium sound speed (isentropic) given by:

a, = V/(,RT)

(R is the universal gas constant divided by the molecular weight),

r* is a reference relaxation time, and if r* is large, we have frozen

flow, since the first bracket predominates. The first bracket is the

frozen wave operator, wherein the velocity of propagation is a t , the
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,
FIGURE 3. Piston and Wave Motions

frozen sound speed, at is found to be somewhat greater than a,, and

one may think of the gas as being stiffer in the frozen flow case. If the

relaxation time is short, i.e., r* small, we may neglect the first

bracket, and we have ordinary equilibrium flow, with acoustic

propagation of small disturbances at the speed a,.
If r* is of the order of the period of the disturbance, the equation

can be solved exactly, but the solution is not particularly edifying. It

is of more interest to begin by considering a wave with a discon-

tinuity, i.e., a jump wave as produced by a piston. A general solu-

tion of the classical wave equation is ¢ = 0(x- at), which includes

the step function 0 = l(x - at). We represent the piston and wave

motions on a t-x plot, as in Figure 3.

In the case of combined waves subject to Equation (14), one expects

a solution closely related to that for the classical wave equation.

Accordingly, we transform to coordinates _ and _, where

1
=- -- (x - at)

air*
(15) and

1

-- a/r-----,x.

Thus, _ is the distance measured from a characteristic as yet

undefined, and n is the distance the piston has traveled. Equation

(14) becomes

a Fa2

(16)

[ a2 _(0_+ ]+ _O_--a" 2_,+ 0.,) = O,
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where the subscripts denote partial differentiation. The highest order

derivatives must vanish

a2

_ - _ = 0

and hence we must have a = a[, and we conclude that jump-waves

must propagate at the frozen sound speed.

Now, the terms involving _ must also combine to equal zero, thus:

a 2 a_ _ = 0
_ ala(- 2_,) + _ ¢_, - aT

and because a = af,

a_
2¢_, + (1 -

0.

Upon integrating once, along the wave front, we find

(¢_)_=0 = e-"(17)

where

1 [1- a_
\

is a rather small quantity. This equation shows that the jump

amplitude decreases with distance, (i.e., _ _ x) and we have a decay

of amplitude of the wave head, as illustrated in Figure 4, which is

taken from [7].

/f " ,

, -- ,ston it
FIGURE 4. Decay of Sound Wave
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b. The Telegraph Equation. Allowing _ to approach zero, and

redefining the piston-travel coordinate by en = _, we get a new equa-

tion, after integrating Equation (16) once with respect to _:

(18) Ca + ¢_ -- ¢_ = 0

for small e. This Equation (18) is related to the telegraph equation,

and provides a model for the relaxing sound wave. Equation (18)

can be solved exactly:

v' = e -¢_+r) I0(2X/{ r[_ - _]}) e_f(_) d_,

where Io is a zero-order Bessel function of an imaginary argument,

and/(_) is a source function for the piston motion. The nature of the

solution indicates how the frozen wave decays and changes to an

ordinary wave. The decay is due to energy absorption in dispersing

the wave. Thus, when chemical activity is present, and we have non-

equilibrium conditions, there results an interplay between the

chemical kinetics and the dynamic processes. This results in the

dispersion of the wave. The relaxation time plays a role somewhat

analogous to that of viscosity.

c. Waves Affected by Heat Sources. Turning now to the acoustic

problem involving heat sources which might be thought of as due

to radiative heat transfer, we write the equations of motion for one

dimension:

Opt Ou t
Continuity: -_-+ po-_-x = 0

(19)

Momentum:
au' ap'

po -_i- + -_ = 0

OH' Op'
Energy: po Ot Ot

p' p' T'
State: -- + --

Po po To

-q'(T')

and we note that the right-hand side of the energy equation is a heat

source term and plays somewhat the same role as does the chemical

production term in Equations (11). We also have u' = Cx, P' = -pet

as before. Manipulation of these equations yields
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(20) _ _ a2¢_ 5, -- 1 q'(T'),
p0

where a is the ordinary isentropic sound speed. A second equation

also results, which is

a2 OT'
(21) ¢_ - -- ¢_ = - R--

5' Ox '

wherea2/5, is the "isothermal" sound speed: For an isothermal wave,

a27= (Op/Op)T = RT, and thus a2/5, = a2T.

The problem now is to combine Equations (20) and (21). If q'

= q'(T'), then, in principle, T' may be eliminated between Equa-

tions (20) and (21). In order to illustrate the effects of radiative

transfer, whereby the hot region loses heat to the cold region, we will

be more specific, and write the simple proportionality

5,--1

Then, elimination of T' yields Equation (14) again, except that r*

is replaced by k. Thus,

(22) k -0 [:]_ + D_¢ = 0,
Ot

where D 2 is the wave operator, 02/Ot- a2(O2/Ox2), the subscripts s

and T being for the isentropic and the isothermal sound speeds

respectively. If k is very large, we get the isentropic wave. If k is very

small we get the isothermal wave. For cases where radiation is

intense, the effect of the radiative heat transfer will generally be to

redistribute the energy and reduce temperature gradients. We note at

this point that a 2is only slightly greater than a2/5, since 5, is near unity,

and one could also derive a form of the telegraph equation (Equa-

tion (18)) for this heat addition case.

d. Relation to Radiation Transport. The foregoing assumption, that

Oq'/OT' = const is not actually valid for radiative transport, and we

must examine more fully the transport of energy by radiation to

determine the proper general expression for qR. (See [8] and [9]3

Radiative energy emitted by an element of the hot gas may be ab-

sorbed by another element, at some distance, or "penetration depth"

from the first. This distance is expressed as a reciprocal absorption coe-

• cient, l/a, for a given frequency _. For a gas, l/a, could be as long as
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one kilometer. If the gas is in a uniform state over distances much

larger than this, full "radiative equilibrium" prevails, and there is no

heat flux, because the heat emitted and absorbed by each element is

the same. However, in problems of interest in hypersonic flows, one

must consider the hot gases at the nose to be confined to a small region,

only centimeters thick. We cannot therefore, assume full radiative

equilibrium (see Figure 5). In flow about such bodies, the path length

of radiation is large compared to a characteristic dimension for

temperature change in the flow. It is necessary then, to evaluate the

integral,

(23) qR = (A, -- E,)d_,

where A, is radiant energy absorbed, and E, is energy emitted, in the

frequency range v to v -4- dr. The theory to be outlined is in Radiative

trans[er by Chandrasekhar [8], and is reviewed also by Lighthill

[9], Goulard [10], and Vincenti and Baldwin [11[.

e. Quasi-equilibrium Assumption. In dealing with Equation (23),

it is commonly assumed that atoms and molecules are in local ther-

mal equilibrium, so that the gas element emits as a black body. This

requires that particle collisions be much more frequent than photon

emissions. Then one may write

hock

Y

.ot
FIGURE 5. Nose-Cap Region
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Ev = 47ra_B.,

where B. is the black-body energy flux obtained from the statistical

mechanics of a "photon gas," and fo_B.d. = (1/Tr)aT4, a being the

Stefan-Boltzmann constant. Now, by the. "quasi-equilibrium"

assumption the absorption coefficient a. is also taken to have its

black-body value, not only for emission, but for absorption as well:

F(23a) Av = _, Iv(a) da.

For full radiative equilibrium, I_ = B,/4_, but here we must

imagine that the "spectral intensity," Iv, results from emission

somewhere else at some other temperature. _ is the solid angle

defining the direction of the incoming radiation (see Figure 6).

/_ may be found from the "equation of radiative transfer"

(Chandrasekhar [8, p. 9]).

OL
(24) - a_(L - B_)

05

which says that along its path, s, the intensity diminishes by

absorption (a_/_) and is augmented by black-body emission (a_B_),

scattering into or out of the beam being neglected.

d_

FIGURE 6. Spectral Intensity

Equation (24) may be solved for I, subject to boundary con-

ditions about bounding surfaces, and the result, via Equation

(23a), may be used to evaluate qR from Equation (23). In carry-

ing out this process, a constant value of av is commonly assumed.
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This disregard of the frequency dependence of a is called the

"gray-gas" assumption. (This has been recently described in Ill].)

f. The Rosseland Limit. We have mentioned that 1/a may be as

large as 105 cm. A characteristic length, say L, is likely to be

much larger than this (radiative equilibrium) only in astro-

physical problems. If 1/a is small (but not negligibly so) com-

pared with L, then it may be regarded as a photon free path

length, and is this "Rosseland limit," radiative transfer depends

upon grad T, just as heat transfer by conduction does. In fact,

Rosseland found,

16 aT a
grad T.

qR-- 3 a

The foregoing Rosseland formula cannot be used for shock layers

because L<<l/a, in general. However, the quasi-equilibrium

assumption is usually quite good. Ordinarily, there are, say 101°

collisions per second for particles, and ca is 3 × 101°/105 or only about

105 photon interactions per second, and thus, the requirement is

met. At very high altitude, the collision frequency would be too

low to maintain quasi-equilibrium, and radiation transfer would be

"collision limited."

Radiation pressure and the contribution of radiation to the

internal energy of the gas are usually neglected. The following

example will serve to indicate the magnitude of these effects and

show why it is reasonable to omit them. Consider the intensity

of black-body radiation from a source at 8000°K. The energy

flux ER is given by

ER = 1 aT 4 _ 5.67 • 10 -8. 4.1 • 1015 _ 8 • 103 joule
3 • 14 cm_sec"

To find the corresponding specific density ED, i.e., the internal

energy of radiation, we divide by the velocity of light, c,

8 • 103 10-7j°ule 3 erg
ED _ 3101-----_ "_ 3 • -- --• cm 3 am 3

and the radiation pressure is

1 dyne
PR= xED _ 1--

cm 2 •
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Thus, while the energy transfer by radiation is considerable, the

internal energy due to radiation, and radiation pressure, are both

negligible when compared to the enthalpy of the order of 10 a erg/cm a,

and the static pressure of the order 105dyne/cm 2, which are typical

of hypersonic flows.

g. Application of Radiative Transfer Theory to Waves. The problem
of the effect of thermal radiation on acoustic waves has been investi-

gated in [12], and quite thoroughly in [Ill and [13]. In [Ill, two

dimensionless parameters of the problem are discussed; i.e., the

"Bueger number,"

NBu _ aL

and the "Boltzmann Number."

Cpp V
NBo-- _T 3 •

These two parameters govern the combination of fluid convection

and radiative transfer. Physically, these parameters have the follow-

ing meaning:

NBo_

N_ _ 0

NBu _ co

NRu -_ 0

implies a completely cold gas (i.e., T-_ 0)

implies a very hot gas

implies a completely opaque gas (1/a small)

implies a completely transparent gas.

These upper and lower limits of the two parameters lead to limiting

cases of sound wave propagation with radiative effects. If NBo-_ oo

(completely cold gas) or NB,-_0 (completely transparent gas) the

solution to the problem is the classical isentropic acoustic wave,

because no radiative transfer takes place under these circumstances.

If NBu-_ co (completely opaque gas), the classical isentropic wave is

again the solution, because in this case, although radiation may be

intense, it is immediately reabsorbed near its point of emission, and

once again no net radiative transfer takes place. If the gas is quite

hot, and quite transparent, radiation tends to smooth out tem-

perature gradients, and an acoustic wave travels at the isothermal

sound speed rather than the isentropic sound speed. Thus, waves

vary in their speeds of propagation, changing from the isentropic

sound speed at small NBu to the isothermal sound speed in a range
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near 1.5 NBu = N_,/(_ • 8.33). Also, within this range of "velocity

dispersion" the damping of the wave due to radiation reaches a maxi-

mum. For large values of NB,, the wave speed returns to the isen-

tropic sound speed, and there may appear another sharp local peak

in the damping.

In the analysis of harmonic waves given in [11], it appears that

in addition to the classical acoustic wave traveling at either the

isentropic or the isothermal sound speed, there is a second, radiation

induced, harmonic wave, which has no counterpart in classical

acoustic theory. The speed and damping of this wave are strongly

dependent upon Nm and NB,. Its speed varies from infinite at NB_

= 0, to zero at NB,--* Go for all values of N_. The damping varies

from zero at Ns, = 0 to infinite at Nsu-_ co. For a fixed finite value

of Nsu, the damping goes from a finite value at Nm--. _o to zero at

Nm = 0, at the same time the wave speed goes from a very high

value to a low value, then back again to a very high value. In general,

this second value has greater damping and higher speed than the

classical wave, but at very high temperatures the damping may be

comparable for both waves, and for a sufficiently opaque gas, the

speeds may be essentially the same.

x n am

_ton

t

FmURE 7. Pressures of a Jump Wave

In some ways, study of the progress of a single jump wave (rather

than a harmonic wave) in a dispersive medium yields a plainer
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picture of the trend of events. Figure 7 sketches Baldwin's result in

[13] for the pressure of a jump wave produced by an impulsively-

moved piston. Close to the piston (location I), the wave is only

slightly dispersed, and NBu << 1, because the wave thickness (L) is

small. Thermal energy will, however, begin to leak across the wave

front, as indicated at location II, and a decay of the jump amplitude

becomes evident. At III, where La is no longer small, the front is

very much flattened, and the wave progresses at the isothermal

sound speed. At IV, the profile continues to spread out as we ap-

proach radiative equilibrium, but the wave center now travels at the

isentropic sound speed again, and we have qn----_O, in the limit as

NBu--_ 0. A complete discussion of the foregoing problem is given in

[13].

h. Waves of Finite Strength. Behind a strong shock wave there is a

large, sudden temperature rise. The very hot gases behind the shock

T

emp. profile
1 " r'x- shock

( x

FIGURE 8. Temperature Profile in a Shock Wave

will radiate and tend to smooth out the wave (See Figure 8). The

temperature profile will tend to be that shown by the dotted line.

Radiation effects may then furnish the resistance, like that of vis-

cosity, necessary for shock formation, but acting at longer range.

Heaslet and Baldwin, in [12], have investigated the effects of radi-

ative transfer on such waves of finite strength. This investigation was

carried out under the grey gas and quasi-equilibrium assumptions al-

ready mentioned. It is found that waves may be maintained entirely by

radiation. The situation is quite analogous to heat addition in a con-

stant area channel, wherein heat added always tends to drive the

flow toward sonic speed. In this case, as in [6], both classical and

radiation-induced waves are included, the entire spectrum of both

being considered to make up the shock.

It is important to realize that radiative effects in flows can be
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large, especially for superorbital speeds, and may play an important

role. The analysis of these effects is very complicated, but possibly

one may hope that some simplifying assumption will appear (similar

to the Telegraph Equation assumption) in order to make these prob-

lems more tractable analytically.

III. Plane shock waves. We now turn to the problem of blunt body

flows with shock waves and examine the effects of chemical non-

equilibrium. We will also introduce models for the analysis of such
flows.

a. Description o[ Strong Shock. First, we will briefly review shock

waves and the Rankine-Hugoniot relations for very strong shocks.

We distinguish between the two shock configurations shown in

Figure 9(a) and (b). Figure 9(a) shows a freely propagating plane

shock, such as in a shock tube. Figure 9(b) shows a bow shock about

a blunt body traveling at hypersonic speed. In this case one has the

additional complications of the turning of the flow around the body,

which causes the shock to curve, and the existence of a stagnation

shock

(a) Plane Shock

hock

stream __

stagnation

(b) Shock at Blunt-Body

FIGURE 9. Two Shock Configurations

point. We shall deal with inviscid flows unless otherwise stated. We

shall consider only the very strong shocks in which dissociative and

radiative effects are important.

b. Normal Shock Relations. We now specialize to the case of a

plane shock in one dimension. The differential equations (3), (6), and

(7), neglecting transport effects, are
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OH Op
Energy: pu--_= u O-_-

Op Ou
(25) Momentum: -_ -4- pu-_ = 0

O(pu)
Continuity: Ox - O.

The iterated forms of these equations apply across shock waves (we

do not prove this here). Combining the energy equation with the

momentum equation, we find

OH Ou

Pox pU_x"

2 where signifies evalua-Integrating, we find H_ + 1 2 H1-4- _Ul,_U® _

tion far ahead of, and 1 far behind, the shock. Now, in the free

stream, H®<< u_. Therefore, we may disregard H®. Similarly, _ul_2

is small compared to HI. Therefore, for very strong shocks we may
write

1 2
(26) HI -----__ u ®

which says that the enthalpy behind the shock is just the kinetic

energy ahead of the shock.

Turning to pressure, we have Op/Ox = -pu(Ou/Ox) which may be

integrated since pu = const, to give

p®+p®u_=plA-plU_.

Now p_ << p® u_ (since p® u_ is just twice the free-stream dynamic

pressure) and p_ >> ptu 2. Thus:

2(27) Pl = p® u®.

The pressure behind the strong shock comes from the conversion of

essentially all the free stream momentum into a force, through de-

celeration of the flow.

We now assume an ideal gas for the purposes of an order-of-

magnitude analysis, and note that R/Cp = 1 - 1/-¢. For the tem-

perature ratio, HI Cp T_ = 1 2_--- _U®,

(28) TA__ _ 2 -1M_
T®--CpT_ 2
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(29) Pressure ratio: P_ _--_p-=_u_, _MZ '
p., po,

(30) Density Ratio: P_L= P_2 . ___T_ 2_
p°, p., TI _-1

and we note that 2_/(_- 1) is approximately 10. It is important to

note that the density ratio is finite, while the pressure and temper-

ature ratios are unbounded, increasing as the square of the Mach
number.

Now let _(v - 1) - _, a small quantity. We now investigate the

order of magnitudes of changes in the variables behind the shock,

since we are interested in the concentration of atoms, rates of pres-

sure change, etc.

Also, since p,,,u,,, = rout, we have u_/u°, _ _. Thus, if _ is small,

pressure varies more slowly than density. Also,

p., fix u ....

SO

0(H) 1 ,
iJX U,,, "_ tl_c =

p/(p,,,uZ,,,) is of order 1 behind the shock and the derivative with

respect to the nondimensional distance x is of order _. (Note that x

is a distance characteristic of the relaxation thickness of the flow.)

We have then, the following order of magnitude relations behind the
shock:

::_-_ 1, -- _ _ .
u.,. fix ,

These relations indicate that concentration and temperature

"trade off" behind the shock, since p, c and 7' are the only quantities

which vary appreciably. Enthalpy is very nearly constant, and

pressure varies only slightly downstream of the shock.
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We now examine the processes behind the shock, and inquire into

the behavior of the concentration of atoms. We assume To = 60,000 °

K for air. Now by Equation (10) for steady flow of a Lighthill gas,

we have (following [20]) :

T -('+1) V p C2 7

(31) uOC --oxWI -- const p_-I (1-- c)e-TD!T-- pD--pI I
.3

and we note that the square bracket goes to zero for equilibrium.

This is the "production law" for atoms. Now when the gas is sub-

jected to a step increase in temperature, by passing through a strong

shock, the first chemical process will be dissociation, resulting from

two-body (binary) collisions. Initially, recombination (a ternary

process) will have little or no effect; however, as time passes recom-

bination must become increasingly strong, and must finally balance

dissociation at equilibrium.

c. Binary Scaling. For the present, we will confine our attention to

that part of the flow immediately behind the shock where we can

neglect recombination. Now, setting W1/p =-l/T, neglecting the

second term in brackets, and noting that p _ p=, then we may write

that T_ _ 1/p®. Because T_e = L/u=, we have

"/'relax U =
cE

Tp_ge p = L"

This ratio is a parameter of the flow. p = L occurs in a group and con-

stitutes a similarity parameter for Equation (31), recombination

neglected. If we recall the simple case

c = cm(1 - e -t/')

and replace t by x/u= and ¢ _ 1/p_, then we have

C _ Ceq(1 -- e-(x/L)'_°=L/u=)'c°nst).

If u= is constant, then p=L becomes a scaling parameter for this

relaxing flow. The same holds true for the more complicated pro-

duction law given earlier, provided initial composition is fixed. We

have what amounts to a restricted Reynolds similarity. This is not

surprising, of course, because viscosity is a binary effect.

d. Calculations for a LighthiU Gas. Following Gibson in [15], we

consider the case where the pressure and enthalpy are nearly con-

stant. Now u(Oc/Ox) = f(T)p[(1 - c)/(1 + c)]e -TD/T represents

Equation (31) for steady flow and no recombination, and
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H- h°_c
T-

R(4 + c)/m2

for a Lighthill gas. If H is constant (and it is, for all practical pur-

poses, behind the shock) this means that T = T(c), and

f(T) = F(c).

We now define a new variable x such that

(X pdx 0 p Ox - , so that - .
Jo u Ox u Ox

Substituting into the rate equation,

OC 1 -- C e_ TD/T

(32) 0× -- f(T) 1 -k-----c

so that the right-hand side is a function of c only, and

x = I(c), or c = I-l(x).

In this situation, if we plot the concentration c versus x, we get

(see [15] and [21]) the universal curve drawn by Gibson, as shown in

Figure 10 (which is taken from [21]). Thus, a binary scaling scheme

is found for strong shock waves. Note that the variable x contains

p_ L as a parameter, and depends additionally on u® and x/L.

__/(. -- - 200,000ft

i

I-l(x )

(X_:) 200kft. (Xree)S.L.

FIGURE 10. Gibson's Universal Curve
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Gibson, in [21], was able to show that even the departures from

the universal curve of Figure 10 can be predicted when binary

scaling is not quite applicable. In the complete equation,

dc dc ( p c'z )(32a) dx - dI 1 po 1 - c e"'_/'l' "

The second term is replaced by I/I_ (I_ is the final equilibrium

value of I(c)). Justification of this step is described in [21 ], for cases

of high equilibrium dissociation level. The solution of Equation

(32a) is, then,

(33) I = I®(1 -- e-_/t®).

This remarkable formula recalls the simple relaxation law pre-

viously discussed, where I(c) now plays the role of c. The effects due

to recombination are shown as dotted lines in Figure 10, and appear

only as departures from the universal plot near the end of the curve

in question. Physically, we expect that the lower the density, the

higher will be the proportion of binary collisions, i.e., those promot-

ing dissociation. Recombination results from three-body collisions,

and is proportional to pa, and thus appears as a small effect near the

ends of the curves. The scaling law renders the initial (dissociation)

portion of the curves similar, regardless of initial density (altitude).

For the scaling law to be useful, there are two required conditions:

1. Shock wave must be very strong.

2. Altitude must be very high (i.e., p small).

6O

10

I !

15000 25000

FIGURE 11. Scaling Limits
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e. Scaling Limit. Clearly, as × increases, the recombination effects
become more important, and Figure 11 (taken from [21]) indicates

qualitatively the limits of x_, the value of × beyond which the re-
combination term can no longer be neglected. The criterion chosen

for Figure 11 is that the recombination rate is approximately 3/10
of the dissociation rate.

Referring to Equation (32a), we see that when p is small (high

altitude) a larger value of c, and hence x, can be reached before the
second term is comparable to 1. Also, when the speed is lowered, the

density is not greatly affected, but c® is much less, so the effect of

c2 in Equation (32a) holds down the value of that term as x increases,

and again a higher value of x is permitted.

f. Calculations for Real Air. The calculations just described for a

Lighthill gas certainly emphasized the value of binary scaling for
strong shock waves at low density. There have been many calcula-

tions of chemistry behind strong shocks in real air (see [16] and [17]).

These may be presented in terms of the scaling variable x. The set of
reactions that have been studied are

(34)

02 _ 20
JN2 -_ 2N

N +02 _NO + O

JNO + N_ N2 + O

N +O__NO++e -

Dissociative

Exchange or
"Shuffle" reactions

Ionization.

In general the "shuffle reactions" are predominantly to the right,

which promotes the formation of oxygen atoms, and encourages the
depletion of N by recombination into N2 or NO. In other words, the

the mechanism for the recombination of nitrogen is more powerful

than the recombination mechanism for oxygen. The shuffle reactions

are binary in nature, and thus have particular importance at high
altitude.

Figure 12 (taken from [21]) shows various concentrations plotted

versus x, as is done in [21]. These are simply sketches, and details

should be sought in [21].
The sketches indicate that binary scaling works for real air about

as well as for the Lighthill gas. Also illustrated in Figure 13 taken

from [21]), is the phenomenon of overshoot of NO and e-, typical

of high-energy flows (here, the shock speed was 23,000 fps).
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FIGURE 12. Concentrations
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FIGURE 13. Overshoot

The overshoot of electron concentration may be understood as a

consequence of the abnormally high translational temperature just

behind the shock. Since translation equilibrates first, the ideal-gas

temperature is reached-about 25,000°K for 23,000 fps. at 200,000 ft.

altitude. In about 5mm behind the shock, O dissociation manages

to take up its equilibrium share of energy, and, by then, the transla-

tional temperature has dropped to 8000 ° K. Of course, while the tem-

perature is at the higher level, radiation and ionization are intense.

g. Vibrational Coupling. Actually, the overall process of equilibra-

tion is strongly affected by vibration. Figure 14 sketches the

sequence: First vibrational excitation begins to rise (rotation is

nearly as fast as translation), and dissociation follows. But, since

dissociation occurs chiefly from excited vibrational states, vibration

and dissociation are kinetically coupled (see [18]). Also, when dis-

sociation does occur, it depletes the higher vibrational states

(see [19]). Thus, at high energy and low density, the kinetic model
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24,000°K

T_

/

/ t,_br.

T_q _ 8000°K

FmURE 14. Vibrational Effects

for air must include vibration. We note, however, that vibrational

excitation is a binary process, and the previous scaling considerations

apply.

IV. Blunt-body flows. We turn now to problems of the inviscid

flow about blunt bodies moving at hypersonic velocity, and con-

sider the effect of chemical reactions. We shall be concerned with

very strong shocks, as before, but now the shock is curved about the

body, as sketcked in Figure 15.

shock

stream-line AB_U_ '_

stag. point C)

FIGURE 15. Blunt-body Shock Layer
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a. The Newtonian Approximation. The radius of curvature of the

nose is denoted by L with O as the center of curvature. The standoff

distance of the shock is 5, and we introduce the independent variable

0 to measure position. For example, if we wish to investigate the

streamline which passes through A, B, we designate the position of

penetration of the shock by the angle 0o and later position by 8.
The free stream velocity is u® and at A its component tangential to

the body is u®sin6. With the assumption of a strong shock wave,

the order of magnitude of the shock layer thickness may be deter-

mined as follows: From Equation (30), p/p® "_ 1/_, and _ is rather

small. Now, consider a cylinder in the free stream (with axis parallel

to the free stream velocity), subtended by an angle 8. The mass flow

through a cross section of this cylinder is approximately

p®u®(LsinS)2,_.

The tangential flow in the region between the shock and the body,

at a location 8, is approximately

pu _ sin O(,r L sin 8 ) _.

These flows must be equal, and after cancellation, we have

p®

L p

and the "shock layer" is quite thin compared with the body dimen-

sion. This result leads to the "Newtonian" model for the analysis of

blunt-body flows, wherein the colliding particles are assumed to give

up their normal component of momentum on impact with the body

(or the shock, which is the same thing, by assumption) and sub-

sequently move tangent to the surface. This is a particular kind of

reflection, neither specular nor diffuse.

For a freely propagating plane shock, we found that the pressure

changes slowly behind the shock. With a body immersed in the flow,

however, the shock is curved and the pressure variations are large.

We have, by direct application of "Newtonian" theory, p/(p®u_)

cos28, and hence O(p/p_u2_)/Ox-._l, where x is the ratio of

distance measured along a streamline to the nose radius L. Pre-

viously, for a plane shock, we had that pressure gradient was of order

(x being measured relative to a relaxation distance). Correspond-

ingly, we now have O(H/u2)/Ox ".__ (as against 2 for the plane
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shock), and, from the momentum equation, u/u ®_. _v/_ (as against

for the plane shock).

The Newtonian theory requires modification to account for

centrifugal forces and effects of shock-layer thickness. Centrifugal

force corrections for a sphere (see [20]) modify the result p c_ cos28

so that p = 0 (a sort of centrifugal separation) is predicted to occur

at 0 - T/3.

b. Binary Scaling. If we re-examine Equation (32), we see that

the crucial thing for binary scaling is that H remain nearly constant.

This is so for blunt-body flows, because _ - 1 is small. The pressure

is not constant, but its variation can be absorbed in ×. Thus, Gibson

and Marrone in [21] show that we can carry over the binary scaling

analysis to blunt-body cases, c being given by the same function of

X:

where

c = I-l(x) ,

f pds(34a) x -= u '

s being measured along a streamline. Finding p and u from New-

tonian theory, we observe the binary scaling rule that results:

( ds=
x =.1 u o®Lfn(u_,O).

c. Scaling Limits. From Equation (34a), we see that as we

approach the stagnation point of the body, u--* 0 and thus x--_ %

so we cannot expect binary scaling to apply right there. On the other

hand, as we travel along a streamline like B - A in Figure 15, we

know that p _ 0 at 60 ° (for a sphere), and thus x reaches some

limiting value, which might be less than x_¢. Figure 16, which

sketches information in [21], compares x_ and x_¢ under a number

of conditions. For L = 30cm and altitude 200 kft, the limiting value

of x along the streamline 6o = arcsin (1/5) just equals x_, the scaling

limit for that altitude. Thus, for streamlines beginning farther from

the axis, the universal curve of Figure 10 applies all the way to 60 ° ,

while along streamlines closer to the axis the function c(x) will break

away from the universal curve.

Of course, even right at the axis (60 = 0), the actual departures
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FIGURE 17. Recombination and Boundary Layer Thicknesses

from binary scaling occur only near the surface, so one may speak of

a recombination thickness 5_ which is perhaps a small fraction of

the shock-layer thickness, or "stand-off distance" 5. Figure 17 (taken

from [21]) shows how 5_/5 varies with p=L. It appears that re-

combination plays a negligible role at 200 kft, if L is less than that
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for which p®L _ 10 -5. Viscous effects at the nose should be included.

They scale completely with p_ L, as indicated by the boundary layer

thickness 5b.t. in Figure 17.
In summary, we can use binary scaling for the nose region, at

high altitude (p_L small) for flow suddenly heated by a strong

(hypersonic) bow shock, concluding that dimensionless variables

depend on p_L for the same u_ and same initial composition

(see [21]). Under these conditions nonequilibrium chemistry and

ionization may be analyzed quite simply.

d. Example: Stand-o[[ Distance. Figure 18 (taken from [21]) shows

Newtonian calculations of 5/L showing the expected scaling for small

values of p®L. Also shown are two points gotten from computed

solutions with full air chemistry. Their agreement with the scaling

rule, even for scales differing by 100, is an excellent indication of

general applicability of the binary model.

.1

L

an

¢

= 250 cm @ 250 kft. [
[J

10-5 10-4 p_L

FIGURE 18. Stand-off Distance

e. Exact Solutions for Blunt Bodies. The "exact" calculations just

mentioned were done by a method due to Lick (see [22]), whereby

a shock shape is assumed, and the full equations with chemistry are

numerically integrated inward to "find the body." Hall, Eschen-

roeder, and Marrone (see [17]) made calculations by this method,

using the 5 reactions cited previously. Here, we encounter a feature

not present in the plane shock problem: Now, as the flow proceeds, it

cools, and the recombination may quench before equilibrium is
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reached. Figure 19 (taken from [17]) shows this effect for two

streamlines, at us = 23,000 fps. The "faster" streamline, B, shows

more freezing effect than A, as we would expect. The freezing of N is

more pronounced because the exchange reactions tend to deplete N,

and keep O high. Thus reactions are binary, and are the favored

recombination reactions at low density.

The freezing effect just described is important to assess in prepara-

tion for analyzing afterbody and wake flows.

B [0] IN]

s

FIGURE 19. Streamline Freezing

V. Nonequilibrium in nozzle expansions. We have, so far, briefly

discussed chemical effects in high velocity, blunt-body flows, with

particular reference to the nose region. We now consider the flow

over the remainder of the body, and examine the effects of chemical

activity upon this "downstream" portion of the flow field. Referring

to Figure 20 (a), we consider a pair of stream surfaces extending down-

stream from the nose region. Following these streamlines, we find

that in the afterbody flow the gas undergoes an expansion, with

cooling and chemical recombination. We can think of this flow as

being like the expansion of a very hot gas through a nozzle (see [23]

and [24]), the nose region corresponding to a reservoir of hot dis-

sociated gas. We, then, learn much about the flow over afterbodies

by considering channel flows, as illustrated in Figure 20 (b). Of course,

such channel flow studies are of interest not only for hypersonic

applications, but also for rocket nozzles and shock tunnels.
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(b) Flow through a Nozzle

FIGURE 20. Analogous Flows

Expansion and cooling experienced by the gas in passing through a

nozzle of course results in chemical recombination and reduction of

the high levels of other modes of excitation. Thus, processes occur
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which are the reverse of those discussed previously for the nose

region of the blunt body.

a. Equation for Nozzle Flows with Nonequilibrium Chemistry. We

write the equations for channel flow, neglecting transverse velocity

components compared to the axial components. Then, measuring x

down the channel, and assuming a single mode of dissociation, the

equations reduce to

ac W_
Continuity of Species: u

ax-- p

Continuity: puA = const

(35) Momentum: dp + udu -- 0
p

Energy: H = _1u2 = const
2

State: p = (1 + c)pRT.

We consider, as usual, that the enthalpy H consists of the internal

degrees of freedom plus the energy of dissociation. (We do not use

the Lighthill model at this point.) In the solution of these equations,

the production term is the major problem, since rates of production

and recombination are involved, in a complicated manner, in channel

flOWS.

For the nonreacting nozzle flows, there is a critical mass flow de-

termined by the mass flow at the throat of the nozzle when M = 1.

Mass flow at the throat is thus a parameter of the problem, with a*

(sound speed at M = 1) being known. With chemical activity,

however, a* is no longer known in advance, and the consequent lack

of a definite mass-flow parameter makes real numerical (machine)

solutions for the problem, via forward integration from equilibrium,

very difficult. Another difficulty concerns initial departures from

equilibrium, where O"c/ax"= O. Computationally, one has some-

thing similar to an essential singularity; thus, integration away from

equilibrium tends to require very fine-grained calculations.

Early work in the field of nonequilibrium channel flows was done

by Bray in [23], and by Hall and Russo in [24]. Hall and Russo used,

first a Taylor series expansion of about 10 terms in 1/'v/A (A is area

+ throat area) to carry the calculations to the throat. By iteration of
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these results, a mass flow was established. Then, downstream of the

throat, a modified Runge-Kutta scheme was used. For a hyperbolic

channel shape,

X 2

A=I-_ L2,

where L isa suitablelength parameter. The resultsfrom [24]appear

in Figure 21 as follows.

C
zero rate(ceqin reservoir)

finite rate

_(c-_ O)

(cfrozen)

Since density decreases, the rate of recombination decreases, there-

fore there is a point where the process of recombination cannot keep

up. (That is, the three-body collisions necessary for recombination

become too infrequent to maintain equilibrium.) The result is that

freezing occurs, rather suddenly, as shown in the curve called

"infinite rate" in Figure 21. Concentration is constant downstream

of the freezing point. Such freezing of the flow is of great importance

in two cases:

1. Propulsion systems. In a rocket nozzle, the freezing results in the

loss of kinetic energy, because some of the energy is frozen in the

form of dissociation and vibration energy, and is thus not available

for propulsion.

7
-- cc -- P C2j

Wl [(1 c)e- TD/T -- _D -J"
P

1 Area (A)

FIGURE 21. Atom Concentration against Area Ratio

If equilibrium is maintained throughout the flow, which implies a

recombination rate approaching infinity, we get the "equilibrium"

curve called "infinite rate" in Figure 21. As a result of cooling and

expansion, density decreases; we recall from Equation (31) that
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Y
To Infini_ rate

0
1 A

FIGURE 22. Temperature against Area Ratio

2. Hypersonic wind tunnels. In such test tunnels, we do not wish to

have a dissociated flow at the test section, and therefore we must

care to avoid too-early freezing.

In Figure 22 (taken from [24]) a plot of temperature versus area

ratio is shown for infinite, finite, and zero rates of recombination.

(To is the reservoir temperature.) Comparison with Figure 21 shows

how temperature and concentration "trade off."

A plot of pressure versus area ratio is shown in Figure 23 (taken

from [24]).

p0

rate

•
0

.4

FIGURE 23. Pressure against Area Ratio

We note that the difference between infinite and zero rates is not

as great as for temperature. Thus, velocity is not coupled to con-

centration as closely as is temperature. The foregoing figures are

based on a temperature of 6000 ° K and a pressure of 100 atmospheres
in the reservoir.



MODELS OF GAS FLOWS 133

The final frozen level of concentration is lower for longer channels

of the same shape, since the longer the channel, the greater the time

during which the recombination process can proceed. Plotting length

versus frozen concentration, we have a relationship as shown in

Figure 24 (taken from [24]).

L

O_

10

.1
I

.6 Cfr_.

FIGURE 24. Length against Frozen Concentration

b. Approximate Freezing Criteria. It is of interest to predict the

occurrence of freezing in the channel, but since channel flows are

characterized by recombination processes, there is no possibility of

applying a binary scaling law.

The change of concentration along an equilibrium path is fixed

by the geometry of the channel. We must now inquire whether the

recombination rate will be sufficient to maintain equilibrium, and if

not where along the channel freezing will occur. This problem has

been studied by Bray in [25], and Hall and Russo in [24]. Bray

assumed that the rate for equilibrium flow is given in terms of

channel geometry, etc., so that (Dc/Dt).q is known. One then asks

when this is greater than the recombination rate:

-_ _ > const(p2T-Sc2)_,

where p2T-Sc2 is the recombination rate term. The left-hand side

is an aerodynamic requirement, and we ask when it is greater than a

quantity proportional to p2T-Sc2. Bray employed the equilibrium

mass action law for a Lighthill gas to eliminate the density, so that

(p2T_,c2)_q ,-,.. (1 - c _2 e-2rD/rT -'.
\ C /_

Then Bray's freezing criterion is
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(36) (1 + c)T - const.

Hall and Russo took the freezing criterion to be

OC C -- Ceq,f_te
(37) Ox r

where r (a function) represents a reaction length or typical path for

relaxation increasing down the channel, c_ is the (fictitious)

C_qfor the temperature and density calculated on a finite-rate basis.
One may easily show that

I Oc <_<c_,__x >> r '

where the upper inequality holds for equilibrium flow, and the lower

inequality holds for frozen flow. The freezing criterion is defined,

arbitrarily, by the equal sign, giving Equation (37). Reference to

Figure 25 indicates these three eases. Figure 25 is taken from [24].

f

__ finiterate
_nite rate

___Ceq for infinite rate T and P

A

FIGURE 25. Concentration against Area Ratio

At point K (Figure 25) where the curve splits into three possible

paths, we can predict Oc/Ox. The average rate during the abrupt

freezing process is ½(Oc/Ox)_. Also since C_q,_t_ drops so quickly to

zero, its average value is ½c_. The freezing criterion is then

(c)
Machine calculations show the freezing process to be rather sudden,

and at point K the freezing line breaks sharply away from the

infinite or finite rate equilibrium lines.
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c. Entropy and the Sudden-Freezing Model. The question of the

entropy of the flow, while one of great interest, is also one of con-

siderable difficulty. Entropy is defined only for a state which can be

reached by an equilibrium process. For the early, equilibrium flow

the entropy is well defined, and the expansion is isentropic. The

change from equilibrium to frozen flow is one which is nonisentropic,

unless the freezing is mathematically sudden. However, completely

frozen flow is again isentropic, because chemistry no longer

participates.

The formula for entropy of a gas in equilibrium is

dE -4-pd V
(38) dS -

T

Using Lighthill's gas and the state equation, we get

dS d T de dp
(38a) R - 3_- + TD_- -- (1 + c) --.P

This form, as it stands, cannot be integrated to give a variable of

state, except for frozen concentration, that is, for c constant. Then,

S_
(39) - 31n T- (1 - c)lnp + const.

R

For equilibrium, we have another relation,

C 2 _ PDe-TD/T

1--c p

by which one of the original three variables may be eliminated. Thus,

To c
(40) S__ 31nT+ (1+ c)-_-+ c + 21n_-- + constR -c

applies for equilibrium. The constant in Equation (39) may be

chosen so that S_ goes over to S_ continuously at a sudden freezing

point.

d. The MoUier Diagram. Bray noted in [25] that his freezing

criterion, Equation (36) gives another relation between c or T,

which, substituted into Equation (40), gives the freezing state in

terms of S only:

(41) c_ = c(S0); Tf_ = T(So).

Thus, one may construct a Mollier-type diagram, as shown schem-
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P const

c constant _x
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FIGURE 26. Mollier Diagram

aticallyin Figure 26 (taken from [25]).

T const

freezing line

According to this diagram, if we start a flow from a point of known

enthalpy, A', the process proceeds along the vertical isentrope

through the "freezing line." Actually, of course there may be a

narrow freezing zone rather than a freezing line. In any case, this

kind of diagram represents a very useful condensation of results,

when freezing is sudden.

An approach to the problem of more gradual freezing has been

made in [26] by considering two subsystems which flow out of equil-

ibrium with each other. Then one can define entropy for these sub-

systems, each of which is internally in equilibrium. However, this

is a dubious approach.

e. Calculations for Real Air. More complete machine calculations

have been made in [34], including the five reactions (Equation (34))

important at high temperature. As usual, the exchange or shuffle

reactions favor recombination of N. Results of calculations for the

concentrations of the various species are shown in Figure 27 (taken

from [34]). An important feature of such a flow is that the recom-

bination of nitrogen is vigorous, via the NO reactions, and O con-

centration, as a result, stays high, freezing almost immediately.
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f. Stream Tube Applications. We now attempt to apply the nozzle

results to flows about bodies. Referring to Figure 20(a), we return to

the idea that the flow through a stream tube about the body is essen-

tially described by a nozzle flow model such as we have just been

discussing. The region of hot dissociated gas near the stagnation

point serves as a high pressure, high energy reservoir. In general,

the nozzle flow analysis cannot be applied without some reservations,

due to the transverse gradients existing in the flow field. If, however,
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we know the nature of the flow (i.e., the streamlines) we can apply

the nozzle flow analysis, with the most serious error being due to

the pressure mismatch at the boundaries between stream tubes.

Recalling Figure 23, we note that the pressure is not seriously

affected by the chemistry, however, and we can accept the nozzle

flow analysis as a reasonable approximation. A large uncertainty
exists in connection with conditions at the nose of the body, however;

in general, we cannot be sure that we have an equilibrium reservoir.

To illustrate the uncertainties involved we compare the sketches,

Figures 28 and 29. In both, we plot concentration against distance

along the body. In Figure 28 dissociation rate is rapid, and equili-

brium is reached before cooling begins. Freezing then occurs down-

stream. In Figure 29 we note the possibility that the concentration in

the nose cap region fails to reach equilibrium. Clearly, the dynamics

of subsequent freezing will be different than in the case of the equili-

brium reservoir.

finite rate
_ ..... infinite rate

S

_ shock

FIGURE 29. Equilibrium not Attained

VI. Transport properties. The final topic of this series will deal with

the effects of viscosity on nonequilibrium flows. We first consider

transport properties, and in §VII will deal with viscous flows.

We will attempt to find flow models for nonequilibrium flows includ-

ing viscous terms. We have already noted that chemical activity and

radiative transfer result in phenomena not unlike viscous effects,
i.e., damping and dispersion in acoustic waves and shocks. The time

lags encountered in chemical kinetics relate to the time lags in vis-
cous effects.

a. Equations of a Binary Mixture. We shall consider a multicom-

ponent high temperature gas (in particular, air). The transport

quantities appear as terms on the right-hand side of Equations (4),
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(6), and (7). Now these are rewritten as

0<0c)- O--n(pcun) = _-_ pD_-_

o (ou 
(42) _n \ On/

0 F OT H2 _ 1u(0_)2+_nnL __n + PD ( _ Hi OcCl On 1 --cl/ "

We indicate the physical meaning of these terms:

0<0c)O---n oD_-_ is a concentration gradient effect;

0 (. Ou _ is the viscous shear stress term; and
On \ On/

consists of a term to account for enthalpy increase due to dissipation,

a heat conduction term, and a term to account for diffusion of

enthalpy.

Enthalpy flux arises from the unequal transport of atoms and

molecules. If more atoms than molecules are transported across a

surface, then, since the atoms carry the dissociation energy,

h (°>,there is a net flux of enthalpy across the surface. Thus the final

term consists of the diffusion velocity quantity, pD(Oc/On), and h (°)

is the property transported. We assume that h (°) is much greater than

the internal energy of molecules, i.e., Hint <<::ca (°).

From the Equation (42) we see that we must specify three mixing

parameters, D, _, and _. We now define two important dimensionless

parameters:

Prandtl number:

_Cp
(43) Pr =- --

which compares viscous effects to heat transfer effects; and
Lewis number:

(44) Le = pCpD
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which compares diffusion effects to heat conduction. The Prandtl
number and Lewis number are both of unit order, and Pr _ 3/4. The

Lewis number is frequently approximated by unity; however; this

may not be very accurate, since the Lewis number depends upon

temperature approximately as shown in Figure 30.

Le

I
3000 8000°K

FIGURE 30. Variation of the Lewis Number

(45)

and

Using the nondimensional parameters, we note that

a (pDOC _ O (Le Oc)O--n\ On/ = _ Pr" O-nn

(ouy (ou) o [. I-a. 1)h(0)oc]]\On� + .... # _ + _ (PrL_ + (Le - OnnJ)

noting that CpT = H - h(°)c.

If, as in [27] we assume Le = 1, the last term on the right-hand

side vanishes, and the energy equation is much simplified, since the

heat flux and energy equation do not explicitly involve chemistry.

We assume, then, that diffusion and viscosity effects are so related
that Le = 1.

We note at this point that gas viscosity increases with an increase

in temperature, as opposed to the decrease in viscosity with temper-

ature in liquids. One may explain this behavior by considering the

interpenetration of particles, which is greater for more energetic

(higher temperature) gas particles. Thus a hot, or rarefied gas has a

high viscosity. In dissociating flows, one finds that atoms have a

greater penetrating depth than molecules, and therefore the

dissociated gas is more viscous than undissociated gas. This is shown

qualitatively in Figure 31, which is taken from [38].
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The collisional models used to calculate the viscosity of multi-

component, high-temperature gases are various; the matter is

reviewed in [37]. Actually, it is usually more important to have the

right model for high-temperature molecular collisions than it is to

account for the presence of atoms (see [38]). For flow prublems,

viscosity enters through the product pu, and p is a stronger function

of c (through the state equation) than is u. In any case, a simple

perturbation formula (see [38]) accounts quite well for the depen-

dence of u on c:

# = #_. omy[1 + 0.3c + O(c s) ].

An important question at this point is: Where do we measure vis-

cosity in flows with large temperature variations? We wish to use a

constant value for viscosity (or, rather density times viscosity), but

what value is most representative? In general, the answer is to eval-

uate viscosity in the hottest part of the flow. This is because the

hottest part is also (usually) the region of lowest density, and hence

forms a very thick layer compared with cooler parts. Properties of

the thick layer dominate transport, and the viscosity of this layer

rather well represents the effective viscosity of the whole flow.

b. Surface Catalysis. Consider a semi-infinite region bounded by a

solid surface, and denote the surface conditions by the subscript zero.

If an atom strikes and adheres to the surface, a second atom may

strike it and recombine the two then leaving the surface as a mole-

cule. In such a recombination, a three-body collision is not required,

since the wall acts as the third body. The recombination is essentially
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a one-body process. A wall may, then, act as a catalyst for recom-

bination, and surface catalysis is of great importance in nonequili-

brium flows. We can write a surface catalysis rate equation as follows:

(48) °c = r Rr\ On/w_ _ (c -- c_),,_,

where the left-hand side is the rate of arrival of atoms at the surface

by diffusion, r is the catalytic efficiency of the surface, the radical

is a molecular velocity term, and the last bracket is the departure

from equilibrium concentration at the surface. The rate of arrival is

then seen to depend upon the degree of nonequilibrium at the surface.

Ifc = c_ there is no net arrival of atoms, i.e., Oc/On = 0. The quan-

tity r is usually not well known since the physical chemistry of

catalytic reactions is not fully understood.

VII. Viscous flows. We have seen how chemical relaxation leads

to the dispersion of waves, and other effects analogous to those due

to viscosity. Often, relaxation and viscous processes must be con-

sidered together.

a. Couette Flow. Among problems of viscous, heating conducting

flows with dissociation, the case of Couette flow is the simplest. Con-

sider two infinite parallel plates separated by a distance 5, the lower

plate being fixed and the upper plate moving at some velocity u,

(which might be very high). In such a flow the shear force is constant,

and the velocity and temperature profiles might be sketched in

Figure 32. Many flows of interest can be represented, at least quali-
tatively, by suitably defined Couette flow situations. A variation

of this problem is to hold both plates fixed and then impose a

FIGURE 32. Couette Flow
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temperature difference between the plates.
The differential equations are:

Ou

(47a) Momentum: U_y-- const

(47b) Energy: u Pru + _-y-F (Le - 1)Prh (°) = const

d Leu_y = W_.(47c) Atom Production: _yy

Boundary conditions would specify velocity and temperature at the

two surfaces as well as the catalytic condition

dc IRTw
(47d) (Leu_yy)w= Prr \/--_m_ (c - C_)w

at the wall.

Now, as in [35[, one can eliminate u between Equations (47a) and

(47b) and integrate the resulting equation. Thus, if Le _ 1 and both

walls are cold (Figure 31), one gets

. 1(48a) Hw 1 -F - •

Maximum enthalpy occurs when the expression in parentheses is

1/4, i.e., at u/u_ = 1/2. Then,

2---d--(48b)

and if

M_=25, (_----w)_,_3OatY=2&

That is, the enthalpy at the center line is 30 times that at the plates.

The foregoing indicates the large amount of heat which is introduced

by viscous dissipation, most of which is absorbed in dissociation.

Consider now that the plates are both stationary, so that there is

no dissipation. However, the upper one is at a very high temperature

(see Figure 33). Equations (47) give relatively simple solutions for

this problem, which is quite a good model for the conditions found at

the stagnation region in hypersonic flow. Now, for Le = 1, tL(OH/Oy)

= const, and for the equilibrium case we may express a measure of
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FIGURE 33. Plates at Different Temperatures

heat transfer as Q _ .65 (this unit will remain an undefined "Nusselt

number," serving only as a comparison for various cases of heat con-

duction). From Figure 33 we note that the temperature gradient is

smallest midway between the plates because a greater proportion of

the heat flux is due to diffusion of atoms in that region, while at the

extreme surface temperatures heat is transferred chiefly by
conduction.

Let us now examine the "frozen" case, where in this context,

frozen means that the atom concentration is not changed by chem-

ical reaction. That is, W = 0, and for this frozen case, Le#(Oc/Oy)

= const. This relation requires that the flux of atoms be constant at

every layer. We consider that equilibrium exists at the upper plate,

but not necessarily at the lower plate. Any of the straight lines in

Figure 34 satisfy the condition Oc/Oy = const. (Assume Leg = const,

for convenience.) Suppose the lower surface is cold, so that (cm)w = 0;

if the wall is completely noncatalytic, i.e., I" = 0, then Oc/Oy must

vanish, according to Equation (46). If, on the other hand, the wall

is fully catalytic, i.e., r-_ co, then c - c,q--_0 for finite Oc/On. In the

(c_i), /

/, t.'1// I/ / I /

IIIII/tl

/'1
j/ frozen, fully cat.

/ ----------- frozen, noncat.

/ / ///

FIGURE 34. Temperature Distribution for the Frozen Case
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frozen, noncatalytic case, the heat transfer (purely by conduction)

is expected to be small, and using the unit introduced earlier, we find

Q _ .3. However, if the chemistry is frozen and the wall fully

catalytic, there is a chemical reaction at the surface, that is, the

energy of dissociation is deposited at the surface upon recombina-

tion, but there is no chemical activity in the gas. In this case, heat

transfer is high and we get roughly Q _ 0.60. Thus, a fully catalytic

wall will experience about the same heat transfer whether or not

there is gas-phase chemistry.

This kind of simple "Couette" calculation provides a sort of

qualitative model for the more complete calculations of the hyper-

sonic stagnation-point flow (see [28] and [31]).

b. Couette Flow with Radiation. Here, we consider that layers of

the gas may exchange heat by radiation:

tt dH
-- ---_- qR = const.
Pr dy

Such a problem has been studied by Goulard and Goulard in [29] for

Couette flow, with a very large temperature difference between the

two plates. The gas is assumed to be quite transparent, _ << (l/a,) so

that we do not have radiative equilibrium. However, we assume

"quasi-equilibrium" and also assume a "gray gas." In this case the

result from [29] is:

P--_ a---y+ 2 B(T')dT' -- 2 B(T')dT" = const

where dT= ady and B = aT4; that is, B is B, integrated over all v.

The terms have the following meaning: OH/Oy represents heat con-

duction downward (Figure 35) from any point toward the low-

temperature wall, the term 2_'_B(T')dT" represents downward

radiative transfer of heat for layers above T, and the last term is

upward radiation for the layers below T. The net effect of radiative

transfer is a smoothing out of the temperature profile. Temperature

profiles and energy flux are shown in Figure 35 (taken from [29]).

The presence of radiation revises the balance of heat flux. If the

overall heat flux level is, say, a value of 3 watts/cmZ/sec., then at the

upper plate, the analysis in [29] shows that 5 w/cmZ/sec, are due to

downward convection, diminished by 2 w/cm2/sec, due to upward

radiation. At y - 1/2 there is a heat flux of 3 w/cmZ/sec, downward
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FIGURE 35. Couette Flow with Radiation

due to convection and the upward and downward radiation con-

tribution tend to cancel each other. At the lower wall, there is then

only l w/cm2/sec, downward due to convection and 2w/cm2/sec.

downward due to radiation. Chung in [36] has analyzed Couette flow

with ionization, including effects of the plasma sheath.

c. Viscous Waves. A somewhat different kind of problem which

provides a "model" for boundary layer flow is that of a single plate

in a semi-infinite expanse of gas, the plate being suddenly moved or

heated (see [30]). Here, we consider an unsteady problem in inde-

pendent variables t and x to correspond to a two-dimensional steady

problem. Since the plane surface is doubly infinite, all O/Ox = 0, and

the problem is linear: We may put all D/Dt = Üu/Ot.

If a step change of temperature or velocity occurs at the plate,

a viscous, dissipative, conductive, or diffusive wave spreads into the

gas above. In the absence of chemistry, the heat flux to the plate

goes inversely with the wave thickness: Q _ 1/_¢/t. Thus, we will

speak of heat transfer in terms of a Nusselt number Qv/t which

would ordinarily be constant.

First suppose the temperature of the plate drops slightly, the gas

above being dissociated. At first, there hasn't been time enough for

any change in c (whatever the value of F) and the Nu is small, com-

pared with the value later on, when c also falls and the chemical

energy is given up to the surface, or near the surface in the gas. Ulti-

mately, equilibrium must be achieved, for any F, though the value

of F affects the speed of equilibration.

Figure 36 (taken from [30]) shows how Nu is affected by catalycity,

as well as by _ which compares change in temperature with change in

(equilibrium) concentration
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1 +_ = \CpAT + h_°_Ac/,q

at constant pressure. ¢ can be quite small for air; in effect, because

h_°_is large. Especially at low density is this true. The mathematical

assumption of small _ greatly simplifies the analysis of this problem,

providing a model which might usefully be extended to other prob-

lems (see [30]).

1 |

Nu = Ov/t

j = 1/2
/ _ r = 3/4

J_t_._ t = 1/6
r = 5/3

ol
10 -3 1 time 103

FIGURE 36. Effect of Catalycity

Figure 36 is remarkably close qualitatively, to the more exact

results for stagnation-point flow due to Fay and Riddell in [31], and

thus, this "Rayleigh Problem" provides a useful model for certain

hypersonic boundary layers. Such a model for the flat plate boundary

layer is provided by assuming that the plate temperature is low, but

it is suddenly moved at high speed. Consequent dissipation produces

heat flux. In this case, the early and late situations are the same--

no chemistry. At intermediate times, however, atoms are produced

in the gas, but may not have had time to recombine at the surface.

Thus, at the surface, one has the concentration-history shown in

Figure 37. A corresponding dip in an otherwise constant Nu may be

expected at these intermediate times. Here again, small e simplifies

the analysis.
d m:, Leading Edge Problem. The corresponding problem of the

h3, ' ,aic boundary layer with chemistry at the leading edge of a

flat plate has been studied by Rae in [33]. In this case, one is con-
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cerned only with dissociation, since recombination is of no conse-

quence in the region near the leading edge, i.e., t << r_. As a result,

binary scaling is applicable. Rae finds that the temperature exhibits

a sharp maximum within the boundary layer, owing to the effect of

dissipation. He was able to achieve a simple solution by an approxi-
mation of a thin reaction zone at this maximum temperature layer,

on either side of which concentration was assumed to change only by

diffusion.

e. The Stagnation Point. As we have mentioned, the stagnation

point is the only case for which the nonlinear viscous flow with

nonequilibrium chemistry has been solved. In effect, one finds the

leading term of a Taylor series in distance away from the stagna-

tion point. The heat transfer results obtained in [31] are illustrated

quite well by Figure 36, except that, instead of real time t, one uses

the characteristic time L� U_ in forming the abscissa. Thus, a small

nose radius would favor "frozen heat blockage," for a noncatalytic

surface, for example.

f. Stagnation Point Heat Transfer at Altitude. Chung in [32] has

analyzed this problem. For stagnation flows as altitude increases,

r increases, and this has the same effect as a decrease in L. Thus the

flow tends to freeze, even though the boundary layer thickens. At

high altitudes, the shock layer, _ is nearly all viscous (refer to Figure

17); that is, the boundary layer thickness approaches 5. The heat

transfer rate calculated by Chung varies with altitude as shown in

Figure 38 (taken from [32]) noncatalytic wall.

In region A, heat transfer decreases with increasing altitude due to

slow recombination in the frozen boundary layer. The energy is

essentially trapped in the form of dissociation energy, and the

boundary layer, being almost completely frozen, has reduced heat

transfer to the wall. However, as altitude increases still further, the
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degree of dissociation behind the shock decreases, and less and less

energy is taken up in dissociation. Thus, at about 210 kilo feet these

two effects are nearly equal and heat transfer reaches a minimum.

Further increase in altitude, i.e., region B on Figure 38 results in

failure to reach dissociation equilibrium behind the shock, and

finally, at about 300 kilo feet, there is little or no energy going into

dissociation at all. Here we approach the condition of an ideal gas,

with no chemistry involved in the heat transfer process.

VIII. Review of models discussed. In these notes, a wide variety of

assumptions and physical and mathematical models, useful in the

analysis of hypersonic flows of a real dissociating gas, are discussed.

In conclusion, these may be listed as follows:

1. Lumped Constituents (§Id): grouping together of nonreacting
constituents.

2. Lighthill Ideal Gas (§If): vibration 50% excited and PD constant;

useful as a standard real gas.

3. Nearly-Equal Speeds o/Sound: small dispersion of sound waves

in either chemical (§IIa) or radiative (§IId) cases. Leads to Telegraph

Equation (see §IIb).

4. Quasi-Equilibrium Radiation (§IIe): even if quite transparent,

absorptivity and emissivity at black-body values.

5. Gray Gas (end of §IIe): Emissivity independent of wave length.

6. Constant pressure, enthalpy behind normal shock (end of §IIIb):

For very strong plane shock, and v nearly 1.

7. Newtonian Flow (§IVa): Enthalpy and velocity nearly constant,
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for strong (curved) shocks and _ nearly 1.

8. Binary Scaling (§IIIc and §IVb): when low-density flow is

initially underdissociated.

9. Coupling of Vibration and Dissociation (§IIIg): behind very

strong shocks.

10. Sudden Freezing (§Va): during expansion of initially fully-

dissociated gas.

11. Constant "Entropy" (§Vc): for channel flows with sudden

freezing--Mollier diagram (see §Vd).

12. Channel Flow in Stream Tubes (§Vf): for analysis of nonequili-

brium afterbody flows.

13. Viscosity Evaluated in Hottest Part of Flow (end of §Via):

generally a good rule. Viscosity weakly dependent on c.

14. Constant Pr, Le, pu (§Via) : Usually done but not fully justified.

15. Q _ AH (§Via): Ideal gas result applies to this extent, if

Le= 1,

16. Couette Flow (§VIIa): a model for hypersonic boundary layers.

17. Viscous waves (Rayleigh Flow) (§VIIc): a model for hyper-

sonic boundary layers, especially stagnation point flow.

18. Thin Reaction Layer (§VIId): for leading-edge problem.

19. Equilibrium Change of Internal Energy Much Smaller Than

Chemical (end of §VIIc): Small e; Simplifies Rayleigh problem.
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Decay of Orbits N67 14405

I. Expression for the drag force.

a. Idealized Case. A body of mass m moves with speed V through a

medium, of density p, at rest. In an interval of length _t, it capturesthe

particles originally within a cylinder of length V_t, and cross section

essentially equal to the cross section of the body (A, say). Thus the

aecreted mass is A V_tp, and if the increase in velocity is _ V, we must

have

whence

(1)

m V = (m -}- AVstp) ( V H- 8V),

dV
m--=- AV2p.

dt

b. Practical Assumption. This derivation takes no account of the

thermal motion of the medium. However the force (P) is found to be

very nearly proportional to V _ except for very small velocities, and

we can put with close accuracy

(2) p -_ _ 1 CD.AV2p,

where CD, which is called the "drag coefficient." is close to 2 if the

153
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mean free path in the medium is large compared to the dimensions

of the body, becoming nearer to unity if the reverse is the case.

If the satellite is rotating steadily, the components of the force

which are perpendicular to the relative velocity will cancel out

almost entirely. If the rotation is about the axes of greatest moment

of inertia, the mean value of A will remain constant. Ionization of

the atmosphere is not likely to be important, since it is less than 5%

at heights of less than 400 kilometers. In any case a change of Co

with time will not affect many of the results.

c. Effect o[ Rotation of the Atmosphere. This effect is small, so

simple approximation is justified. Let us suppose that the atmos-

phere rotates with the same angular velocity as the earth, _, say.

Then its velocity at the point r, where the origin is at the earth's

center, is fl X r. If the satellite is at r with velocity v, its velocity

relative to the atmosphere is V, where

(3) V = v - fl ><r.

Thus (writing V = IV], v = Iv], etc.)

V 2 = v'_- 2v • (fl X r) + (fl X r) 2

= v2- 2ft. h + (fl X r) 2

= v2 - 2flh cos i + fl2r2cos'_6,

where h = r X v is the angular momentum per unit mass of the

satellite about the earth's center, _ is its declination, and i the inclin-

ation of its orbit to the equator. We put

V 2 = v2F,(4)

so that

(4a)
2_h cos i _2r2cos25

F= I -_
v 2 v 2

The third term in F may usually be neglected, being less than about

1/250, and the second term, which is of the order of 1/15, may be

evaluated at perigee, where the density is much greater than else-

where on the orbit. Thus we may effectively regard F as constant.

Then the drag force is

2 V
1 1CDApFv,(__)"(5) P= --_CDApW= --
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The component of V in the direction of the radius vector is

V.r v.r
- - v sin X, (using (3))

r r

where _/2- X is the angle between the velocity and the radius

vector. The component of V in the transverse direction in the orbit

plane is

V. (h X r) _ {v_r_ _ (v. r)_ - (fl × r) - vf_}/(hr) (using(3))
hr

= { v2r_cos'_X - _ hr2cos i }/(hr)

= vcosX- _rcosi (sinceh-- rvcosX).

The component of V in the direction of h is

V. h O. (r X h) (using (3))

h h

-- _(0. v)r _- (fl- r)(r. v) }/h.

Now

ft. r = flrsin6

-- _ r sin i sin(_ -t-/},

where o_is the argument of perigee, and [ the true anomaly. Also

O. v = _ v sin i cos(_ + [ - X),

SO

V.h
- _ r sin i cos(_ + D.

h

Therefore if f, _ and h are unit vectors in the radial, transverse, and

normal to orbit directions respectively, the drag force may be written

p=_2CDApv/(F)v2{sinXf+(cos X ar?si),

ar sin/
cos(_ + Dill

+ ----_ j

Since v - v(sin Xf -}- cos X_), this may be written

m kpvl v _ _rcosi_ 4- flrsini cos(o_ + DII },(6) P = -
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where

CoA _c/ F
(7) k = ,

m

m being the mass of the satellite.

II. The effect of the tangential component.

a. The Equation of Motion. The component of P parallel to the

velocity v is the largest part. The equation of motion, considering

only this part, is

1

(7a) f = - grad V - _ kpvv,

where V(r) is the gravitational potential.

b. The Energy. If E = ½v2+ V, then

dE 1

(8) dt - _ "v + v- grad V = - _ kpv 3.

Now V = -_/r - R, where R is the disturbing function for the

oblateness, and so

E=lv2-_--Rr

- _ R.
2a

---_d 1 3
.'. 2a2 - R = - _kpv .

The change of the major semiaxis a due to the drag alone is therefore

kpa2v a

(9) a =

c. The Angular Momentum. If h = r × v,

dh 1

d-t = r × r = r X grad R - _ kpvh.

The change due to the drag alone is therefore

dh 1

(10) dt -- _kpvh.
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Therefore the direction of h is unaltered, and so the position of the

orbit plane is unchanged by the tangential component.

Since h = {_a(1 - e 2) }, with (9),

(11) - el kp(1 - e2)v( a - 1).

In terms of the eccentric anomaly E,

(9a) a= -kpna2(ll+eC°sE_3/2- ecosE] '

and

(1 -}- e cos E) 1/'_
(lla) e---- -- kpna(1 - e2)cosE

(1 -- e cos E) _/2"

Hence the secular rates of change are

1 r 2" (1 +ecosE)_/2/F.
(12) a = - _-_Tkna2Jo " p (1 ecosE) l/2-_'

and

(13) _= 1Tkna(1-e2)fo2"pcosE(l+ec°sE_/dE - ecosE/ "

King-Hele uses the quantity x = ae, whose secular rate of change
is therefore

1 fo 2" (11 -I- e cosE_I/2(14) _ = -- kna 2 p(e -t- cos E) dE.
- ecosE}

d. King-Hele's First Order Theory of the Orbit. In polar coordinates

(r, 0) in the fixed plane of the motion the equations are

I k 2
r-r02= _ _ pusinX,r_

(15)
ld 1 ,_
r dt (r2_) = - 2 kpv' cos X.

Putting u = 1/r, and h = r20, and eliminating the time as indepen-

dent variable, we obtain
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d2u /2

(16) d_2 4- u = h_

and

dh kpv

(17) dO - 2u _"

We use the Poisson method of succesive approximation, putting

u = Uo+ _lu + _2u-4- "-" ;
(18)

h = ho-4- _lh + ..-.

e. Unperturbed Solution.

d2uo /2 1

do-----_--kUo = _o2= Poo' say

(19) dho
-- _ 0,

do

Whence ho, and therefore Po, is constant, and we obtain the equation

of the ellipse

(20) Uo = Po 1 + eocos(0 - o_o)},

where eo and _o are disposable constants.

f. First Order Solution. The equations are

d251 u 2/2

do_ n5(21)

and

(22)
dS_h kpvo

d_ 2u_'

where vo is v computed for the unperturbed orbit (20). From these
we obtain

(23) d_u ds_u _tkp Vo
do _ + d----_= _.--_ = g(O - O_o),houo

say. A particular solution is

= rg(o' - =o)sin(O- o') dO',
ao J60
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whence

f8 f8 n5lu(O) = dO" dO'g(O' - o_0)sin(0" - 8')
J00 Jo0

= dO' dO"g(O' - ,oo)sin(O" - 0')
Jo'

£= dO'g(O' - _0) 11 - cos(0 - 0')}.
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The equations (12) and (14) may also be derived from this by

considering the change in u from perigee to perigee, which leads to

the expression

(25) Aq = _q2 dfg(f)(1 - cos/}

for the change in one period of the perigee distance q and also the

change in u from apogee to apogee, which leads to

F(26) Aq' = _q,2 df g(/)(1 -}-cos/)

for the change in the apogee distance q'. Then transforming

from the true anomaly f to the eccentric anomaly E, and use of
1

a = _(qWq'), and x = ½(q'-q), leads to the previously found

forms of equations (12) and (14).

III. The form of the atmosphere. We assume the surfaces of con-

stant density to be ellipsoids of revolution, with the earth's rota-

tional axis as axis of symmetry. If we assume the ellipticity of each

ellipsoid to be the same as that of the geoid (King-Hele gives the

value 0.003353), then at a height of 300 kilometers our ellipsoids

remain within 1 kilometer distance of the ellipsoids in which the

ellipticity varies to maintain hydrostatic equilibrium. Thus the polar

equation of each surface may be written

(27) r = r0{ 1 --_ sin2_ -4- O(_ 2) },

where _ is the declination. Along a given radius vector, the density

is nearly proportional to exp(-r/H), where H is the "scale height."

If the perigee distance changes by more than about 100 kilometers,

we must take account of the variation of H with altitude, but in fact

this distance usually changes by less than 60 kilometers in the first

95% of the satellite's lifetime.
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We will not consider the variations of density with time. Such

changes do occur, with the period of the sun's axial rotation, with

that of the earth's rotation (due to differences of day and night),

and the sunspot cycle. These changes do not however affect the rela-

tive changes of a and x.

Thus we will take the density as

(28) p = p0exp{ --_r(1 A- _sin2_) },

where B = 1/H.

IV. King-Hele's treatment of the secular changes.

a. Approximate Equations of Motion. Confining ourselves to small

orbital eccentricities, we use the expansions

(1 A- e cos E) 3/2 3(1 -- e cosE) 1/2 = 1 A- 2ecosE + _e2(1 A- cos 2E) + 0(e 3)

and

(cosE+e)(ll+eCosE_l/2=cosE 3 1- ecosE/ + _e + _e cos2E

Also

_1_181e2cosE + 1 2_e cos3E A- O(e3)-

1 2

sin2$ = _sin i{1 -- cos 2(¢o -4- D }

1 2
= _sin i{1 -- cos2(_ + E) + ecos(2_ + E)

- e cos(2_ A- 3E) Jr 0(e z) }.

Hence the equations (12) and (14) yield, using also r = a(1 - e cos E),

f;a = na2kpoexp( - _a) dE exp(_ae cos E)

.I1 + 2ecosE+3e2(1 + cos2E)
(29)

{-- c 1 + e cosE - cos2(_ + E) - _ecos(2o_ + E)

+ _ecos(2_o+ 3E) + O(ea, ce2) ,
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and

i = -- na2kp0exp( - _a) dE exp(_ae cos E)

161

I 3 1 _ 1 2• cos E + _ e + _ e cos 2E + e2cos E + _ e cos 3E
(30)

{ 1 1-c cos E - _ cos(2o_ -}- E) - _ cos(2oJ + 3E) -}- e

__ 1 }I e cos 2_ - e cos 2(_ -}- E) + _e cos(2,_ -_ 4E)2

-'1-O(e3'ce2) 1"

where c = ½_a_sin2i, which is usually less than 0.2.
b. Bessel Functions of Imaginary Argument. The functions In(Z)

= i-"J,(iZ) may be shown to satisfy the generating relation

1
(31) _,®I,(Z)P--exp{-_Z(t+l)},

from which, putting t = exp(i_), we see that I, must be

(32)
I.(Z) = _ xp( - in_) exp(Z cos _) d_

1 {-2.
- 2_Jo cosn_, exp(Zcos_) d_,

after a little rearrangement.
Also we see that

(33) exp(Z cos _) sin n_ d_ = 0.

So, putting _ae = Z = ax, equations (29) and (30) yield

(34)
I 3_-= - na2kpoexp(-_a) Io + 2Ile - Ioc + _ (Io + I2)e2

+ {12 + (311--lls)e}c cos 2_ + O(eS, ce2)1'
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and

(35)

p. J. MESSAGE

_= _na2kpoexp(-[3a)I Il + l (3Io + I2)e

- Ilc + 1 (1111 + Ia)e 2 + (12 - Io)ce

1
+ _ { (11 + 13) + (Io - I4)e }cos 2_0

-_ O(e 3, ce2) ].

Division gives

-- I2) e+ (I°)( I2da Io 1 (Io_(3Io+f 1dx- l,-4- 2e--2 \ f_] \ I, _

(36)
• c cos 2w + 0(e 2, ce).

c. Phase 1. We have the asymptotic formula

1 1 Ia)2 2f_

expZ { 4n2-12 (4n2 - 12)(4n2- 32 ) }(37) In(Z) _'-_ 1 1! 8Z + 2! (8Z) 2 °'"

as Z--_ _,

which is found to be useful if Z > 3, that is if ae/H > 3. Now since

H is about 50 kilometers within about 50 %, and a is about 7000

kilometers, this means that this formula is useful if the eccentricity is

greater than about 0.02. The part of the motion for which this is true

is called "Phase I" by King-Hele. Use of this formula in (36) gives

da Io 1 3 e2 2c

(38) dx - 11 _a 2_2ax -_ _x _2X2 COS 2o_+ O(e 2,ce).

Differentiation of (31) with respect to Z, and equating coefficients

gives

din 1
(39) dZ - 2 (In-, + In+0,

and differentiation with respect to t similarly gives

1

(40) nln = -_Z(I,,_I - In+O,

and hence, on eliminating In+x,
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(41)

With n = 1, this gives

(42)

din n
d---Z-t- _ In= In-1.

163

Io 1 1 dI1

I1 - Z + It d---Z"

This enables equation (38) to be integrated to give (omitting the

term in cos 2_0 for the moment)

(x) l x xoa--ao= In _o + ln(/1--_) /_a
(43)

3 (x) O(xe 5 ae2\-t-2--_oln xo -t- \[ta,ae,-_),

suffix zero indicating initial values. Using the expansion for I1, this

gives, noting that the perigee distance q is given by q = a - x,

q-qo= - 1HI (1 - 5H)ln(e°)

e) t 3H(1 + eo)
(44) +(eo--( _e_e0 1%_--_}]

O(aeS,_e ) •

Returning to the term in cos 2_, we note first that if we substitute

(43) into (35) we obtain, for the dominant term,

K
£ .... _- ...,

x

where K is a constant. Thus

x 2 _- x_ - 2Kt-t- ....

We know that, from the oblateness effect, the most important

change of ,0 with time is a linear increase or decrease, according to

whether the inclination is greater or less than the critical value. In

either case, we may write to a first approximation,

o: = A + Bx 2,

where A and B are constants.

We may now include the cos 2w term in our result. Integration of
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this term leads to the addition to the right-hand side of equation (44)
of the terms

2c/-/s (c°s 2¢r° - _ c°s2_ )Xo

1 2
(44a)-4c_'I-[S'V/([B[Dr){cosA Fj:;:II::I;( cos(_ 7r¢ )de

-kl-_lB sin A , _ _/,, ", /.)(z_v'('_l /" sin (-_ _r¢ ) d¢ }ls I

Since the orbital period is given by T/To = (a/ao) 3/2, a relation simi-

lar to (44) may easily be derived between T, e, To, e0 and H.

This relation, and the complete expression (44), have been used by

King-Hele with success to derive H from the known values of q, T

and e of a satellite's orbit at two stages in its lifetime, and from such

determinations he has studied the variation in H with altitude and

discovered its large changes as the sunspot cycle progresses.

d. Phase 2. For e < 0.02, we use the relations (39) through (42) to

put equations (36) into the form

da 1 1 dI1 1 d ( Io }dZ-Y2 +

0 88
Z c cos(A + BI-I2Z 2) + O(e 2,ec),

and from this is derived, by integrating and putting q -- a - x,

-'f [1 3H\ (ZlYl(Zl) 2HiZ, Io(Z,) Zlo(Z)q
--ql= "[k - +

( FIBI/_2z2

-- Z1 + Z + 0.44c i cos A J, cos ¢ de

(45)

B _'lBI/_ sincd¢ }- sinA ,

+ 0@ 2,0.06c) J,

where the suffix "1" indicates initial values in Phase 2.

For a treatment of orbits of high eccentricity, see King-Hele's

paper III.
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V. The effect on the apse, node, and inclination including the non-

tangential components. We will now take account of all of the com-

ponents of the drag force. If we write R, S, and W for its components

per unit mass in the radial, transverse and normal to orbit plane

directions respectively, then from (6) we have

1

R = - _ kpv2sin X,
(46)

1 2
S = - -_kp(v cosX - v_rcos i),

z

and

1

W = - _ kpv_r sin i cos(_ + D.

The equation for the apse longitude is (see e.g. Brouwer and Cle-

mence, p. 306),

dw

dt

(47) -

bc°SfRna---_e+ r(2 +ecosDsinfs+nabe 2 sin2( 1 i)_d_

kpvsin[{ 1 1 r_cosi }e 2 h (2 + e cos f)

2 1
+ 2sin (_i) d_,_-_

after some reductions, in which we make use of the relations rv cos X

= h = nab, and vsinX = (na2/b)esin[. The first term is an odd func-

tion of[, and so its mean value over an orbit is zero. The equation for

the node longitude is

_ 1 kpv
(48) d_ r sin(_ A- D W = - - -_--_ab_rsin 2 (w A- f)dt nab sin t 4 "

This is also an odd function of [, and we conclude that the contri-

butions of the drag to the secular motions of both the apse and the

node are zero.

The equation for the orbital inclination is

(49)
di _ rcos(_ -4- f) W ....
dt nab

1 kpv ar2sin i cos_(o_ + f),
2 nab

which clearly has a strictly negative secular part, as found by Vinti
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(1959), the leading term in expansion in powers of e being

1

(50) - _ kpoa_ sin i exp( - Ba) Io.
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Gen-ichiro Hori

The Effect of Radiation Pressure

on the Motion

of an Artificial Satellite
N67 14406

I. Equations of motion; Disturbing function. With the use of the

Delaunay variables, Lx, /-,2, L3, L4, 11, 12, /3, /4, which are usually

denoted by L, G, H, K, l, g, h, k, respectively, the equations of mo-

tion of an artificial satellite around the oblate earth disturbed by

solar radiation pressure are

(1) dLj _ OF dlj =- 0FF (j=1,2,3,4)
dt ol i 'dt OLj

with the Hamiltonian

2

F= # -vL4+ FI(L1, L2, L3,11,12,- --)

(2)
+ F2(L1, L2, La, ll, 12, -, - ) + AF2(LI, L2, L3, l,, 12,13,/4),

the motion of the sun being Keplerian.

In Equation (2), F1, F2 are severally the second and the fourth

harmonics of the earth's potential, and AF2, the contribution of solar

radiation pressure. We assume that AF2 is of the same order of

magnitude as F2, and - rL4 is assumed to be of the first order. The

system (1) has four degrees of freedom but the Hamiltonian is free

from the time. The fourth angular variable 14 stands for mean longi-

167
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FIGURE 1. Satellite Orbit

tude of the sun, _t -4- const, so that - pL4 in Equation (2) may repre-
sent the kinetic energy of the sun.

If _ denotes the angular distance between the sun and the satellite;

r, [, the radius vector and the true anomaly of the satellite; re, re,

the corresponding quantities of the sun, we have

_F_ -- - r__
r_) cos _r.

If further x, y, z; xe, Ye, ze stand for their rectangular coordinates

with the xy-plane in the equatorial plane and the x-axis pointing to

the vernal equinox, we have

cos _r - x xe+ Y.Y___o + z.z_Qo.
r r e r r e r r e

But (refer to Figure 1)

x

r
- cos (f +/2) cos ls - sin ([ A-/2) sin/3 cos I,

Y = cos ([ +/2) sin 13A- sin (f A-/2) cos ls cos I,
r

z
-- = sin ([ +/2) Sin I;
r
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xo _ cos(fo + go),
rQ

169

Ye _ sin ([o + go) cos _,
rQ

z-2° = sin ([o + go) sin _,
r@

then,

a-_" a (A cos[ + B sin D,

1
A = _ (1 + 0) (1 + 0e) cos (/2 + 13 - [e - go)

1

+ _ (1 + O)(1 -- Oe) cos (12 + 13+ [0 + go)

1

+ _ (1 - O)(1 + 0e) cos (12 - 13+ [0 + go)

1

+ _ (1 -- 0) (1 -- 0e) cos (/2 - la - [e - go)

1

+ _ sin I sin E [ cos (/2 -- gQ -- [0) -- cos (/2 q- [0 + go) ],

1
B = - _ (1 + 0)(1 + 00) sin (12 + 13 - [e - go)

1

4

1

4

1

4

1

2

- - (1 + 8) (1 -- 0e) sin (12 + 13+ [0 + go)

- - (1 -- O)(1 + 0e) sin (12 -- 13 -I- fQ -t- go)

- - (1 -- 0) (1 -- 0e) sin (/2 - 13 -- fQ -- gQ)

-- - sin I sin _ [ sin (12 -- [@ -- gQ) -- sin (/2 _- [Q Jr go) ],

where a stands for the semi-major axis and

0 = cosI, ee = cosE,
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the subscript ® referring to the sun.

We may assume with enough accuracy that the sun moves in a

circular orbit. Under this assumption fo + go reduces to 14, and we
have

a r (A cos f+ Bsinf),
(3) AF2=--_o" a

1
A = _ (1 + 0)(1 + 0o) cos (12 + 13 -/4)

1
+ _ (1 + 0)(1 - 00) cos (12 + 13+/4)

1

(4) + _ (1 - 0) (1 + 0o) cos (/2 -- la +/4)

1

+ _ (1 - 8)(1 -- 0o) cos(/2 -- 13-/4)

1
+ _ sin I sin _[ cos (/2 -/4) - cos (/2 +/4) ],

and a similar expression for B which we do not need in the present
discussion.

II. Elimination of short period terms. Since AF2 is assumed of the

second order, this has no contribution to short period terms of the

first order. We may have, after eliminating 11 from the Hamiltonian,

the new equations of motion,

(5) dL S OF* dlj _ oF*
dt - ol_ ' dt OL_ (j = 1,2,3,4)

with

(6)

where F0*

F* = F_(LI) - vL4' + F_(Li,L_,L_)

! f f ---4- F_ (L1, L2, L3, , l_, -, -)

+ aF_(L_, L_, L_, -, l_, l_, lD,

stands for _2/2L_2 and L_, l_ are identical with L3, 14
respectively.
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In Equation (6), F_*,F2* are provided by any theory of the main

problem of artificial satellite motion. (See the article by D. Brouwer,
Astronom. J. 64 (1959), 378-397). It is a principal feature of the main

problem that F_* is free from l_ or g' and then free from all the
angular variables. F_*has been found to be

(7) Fi* = /z4k2 ( 1 3 L_2'_
x-_l J-J2

On the other hand, the relations

---3e, [rsin/l =0 ,[rco ,]
the subscript s denoting the constant part in ll or l, give

(8) AF_ 3 _ ae
=2 a2oA'

1
A = _ (1 + 0) (1 + 0o) cos (l_ A- 1'3- l_)

1
-}- _ (1 -t- 8)(1 - 8o) cos (h' -t- l_ -}- l_)

(9)
1

-}-5(1 8)(1 + 8o) cos (/_ -/'- 3 + l_)

1
3 l/)-}- _ (1 - _)(1 - 8o) cos (l_ - l' -

1
+ _ sin I sin c [cos (l_ - l_) - cos (l_'+ l_) ],

where

(10)

/

0-- 3
L_'

a -

sin/= 1--_-_], 0o=cos_,

-- --,. e ---- 1 -- L_ 2 ] .
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III. Elimination of long period terms; Nonresonance case. Consider

a canonical transformation L s, lS --_Lf, If with a determining func-

tion
4

S* = _ Lf l_ + S;(LI', L_, L_', -, li, l_, iS):
1-1

(11) aS* oS; aS* OS;

L; = oZ;= L; + o--Tf' l;"= = t;+ "

The requirement that a new Hamiltonian F** should be free from

all the angular variables l; (j = 1,2,3,4) may yield

OS;_ [L" L" aS; n" oS;_F_(L_') - p X L_ -t- -_4 ] -t- F; \ ,, 2 -J-"_2 ' 3 -J- _3 /

-t- F¢(Lf , L_', LL -, 14, -, - ) -{- aF_(L7, L_, L_', -, lL lL lD

= F_* + F;* + F_*.

2

order 0: F_* = F_(L_) -= _ "
2L_2 ,

order 1: F;* - pL_ + F;(Lf,L2,L3);

aS; oF; aS; OF; aS;
order 2:- p -_- + OL_ Ol_ +- OLd' ol_ + F_ + AF_ = F¢*,

or, if the subscripts s and p refer severally to constant and periodic

parts in l_, l'3, l_,

(12) F_* F_ (L_', r. L.__-- L_2, 31,

aS; OF; OS; OF; aS;
(13) J' --_- -OL_ ol4 OLg ol_ - F_p + ,_F_.

When none of the combinations .+ i(OF;IOL_)+j(OF;IOL_)

(i.j -- 0, -t- 1), vanishes, or remains of the first order (nonresonance

case), integration of Equation (13) results in

S; = S,,o_ + aS;,

where S,*ou is the contribution of F_ and given by the theory of

the main problem; aS{*is the contribution of solar radiation pressure.

Let n2, n3 be
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OF_ = nJ2 -4 3
n2 -- oL_ - "4 -}- 02 '

n3 = _L " - nJ2 -4 3,, 3 -_e ,

where R stands for the equatorial radius of the earth, J_, the coeffi-

cient of the second harmonic of the earth's potential when developed

in the Vinti form (J2 = + 1.082 • 10 -3) and n = _2/Lf3, the mean

motion of mean anomaly 11, and, = L_/Lf. We then have

AS_ --- 2 a_) (1 -Jr- 0) (1 -_- 0@) Sinn2(l____-Jrn31'_-vl_)

1
-4- _ (1 -[- 0)(1 -- 0o)

sin (/_ + l'3 "4- l_)

n2-4- n3-4- r

(15)
1

-4- _ (1 --e)(1 A- Co)
sin (/_ l'- 3 3t-/_)

n2 -- n3-4- r

1 sin (/_ -- l_ -- l_)

+_ (1 -- 0)(1 -- 0o) n2- ha- r

1 _sin (h' -- l_)
+_ sinlsint t n2"--_,"

a, e, 8 being given by Equations (10) but with L_, L_, L_ replaced

by Lf, L_', L "3respectively. Since _ is assumed 0(_), and p, O(nJ2),

AS_ is O(J2) as expected. Equation (15) yields the long period terms

of the first order due to solar radiation pressure in the nonresonance

case. Solar radiation pressure has no contribution to secular terms
in this case.

IV. The condition for resonance. When some of the denominators

in Equation (15) vanish or reduce to the second order, Equation (15)

looses its validity (resonance case). From the relation, n2a 3=/_, we

have

(16)
p=n.p_-l/2R3/2(_) 3/2

or
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with

r0 = v_-1/2 RSn = 0.1606.10-3,

r0 being the ratio of v to the mean motion of a fictitious satellite

with R as its semi-major axis.

Then Equations (14), (16) give

n2 -}- in3 -4- jr

• _o a
(17) ---nJ2 (R) 2 [_-4(- _ - i_

(i=0,±1; j=±l),

hence the condition for resonance is

(18) -_-1502-i 3_0__+j__23 vo (R)7/24=0,

or

( )7,24(18') n =J4_-0 (1 A- i2O - 502).

This is a relation between a, e( = X/(1 - 72)) and 0.

If (a/R)7/2_ 4 is measured along an ordinate, and 0 along an abscis-

sa, Equation (18) or (18') represents six parabolas of the same shape

with their _xes parallel to the ordinate. (See Figure 2.)

V. Resonance cases. When a set of values of a, e, 0 is such that it lies

on any of the six parabolic arcs in Figure 2, we have a resonance of

simple character, and may treat it in a way similar to the case of the

critical inclination in the main problem. Assume the mean motion of

an argument l_ + il_ -4- jl_, that is, n2 -_ ina -4- jv vanishes or reduces

to 0(J_2), and let Q2 cos (l_ + il_ +jl_) be the resonance term in

AF2*. In place of Equation (12), (13), we may have

(19) F_* = F_(L_',L_',L_') + Q2(L_',L_',L_') cos (/_ + il_ + jl'4),

oS¢ OF_ OS_ oF_ OS_
12 ......

Ol_ OL"2 0l_ OL"3 0l_
(20)

= F_ + AF2* -- Q2 cos (l_ -4- il_ + jl'4).
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3 ,/2
(4)

(1): i=l,j=--i 3.0

(2): i=l,j=l

(3): i--1, j=1

(4): i=-1, j=-1

(5): i=O,j=-I

(6): i=O, j= l

C.I.: critical inclination

D.R.: double resonance 2.o

(2)

I

I

I

I

I

I

3

I

C.I. i
$

I I

I I

I J2
!

!

I

I

I

D.R.
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FIGURE 2. Conditions for Resonance
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Since the right hand member of Equation (20) has no resonance

term, S_* is determined with no trouble.

The new equations of motion are

(21) dLS' OF** dlf" OF**- - (j= 1,2,3,4)
dt Ol_' ' dt OLd'

with

(22)

2

#

2L_,2

I! H IfrL_'+ F_(Lf,L_',L_') + F2,(L, ,L2 ,La)

fJ IL" L" L "_ il"-4- ,_2_ 1, 2, s i cos (l_' -I- 3 + jl_').

After a canonical transformation LT, l]"---,x#; y# with

(23)
y, = 17, Y2 = l_', Ys = l_': Y4 = 1_"-4- ill -4-jl_';

Xl = L_', x2 = L'J- jL_', xs= L'-s ijL_', x4 = jL_,

the system {21) leads to

(24) dxj _ OF dyj _ oF (j = 1, 2, 3, 4),
dt Oyj' dt Oxi

with

2

(25) F = g
- jvx4 -4- F1 + F2 + Q2 cosy4,

where F1, F2, Q2 are functions of x's only. We have at once, xl, x_,

x3 = const and the system (24) is of one degree of freedom.

The following development of the theory is exactly the same as

the case of the critical inclination except the case of double resonance

which will be shown later: the solution is expanded in powers of the

square root of J2 or B/J2; the solution is represented with the use

of elliptic integrals or elliptic functions; Y4 makes a libration about

an equilibrium point, etc.

Next, consider cases where a set of values of a, e, 8 fits a cross

of any two or three arcs of the parabolas in Figure 2. A typical

example is the resonance in the polar orbit, 8 = O(J2), and j = 1.

In this case we have the resonance with two critical arguments l_'

and l_' A- l_'. An entirely different approach is required.
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VI. Double resonance. Returning to the system (24), we may find

that the development of the theory in powers of the square root of

J2 or _/J2 becomes also false when _2F1/ax2 vanishes (double reso-

nance).

From

we have

#4 J2 R 2 [ 1 3 (X3+ ix4) 2 ]FI=X3(X 2+x4)3 --4+4(X2+X4) 2 J'

02F1 3 #4J2R2 (i2 _ 2 - i. 10# + 15#2).
(26) Ox_ - 2 x3(x2 + xJ 5

Since i = 0 occurs only in polar orbits, the double resonance occurs

if

1592 - 100 - 1 = 0 or 0 = _ + v/IO = 0.754 (for i = 1)

or

1582 -4- 108 -- 1 = 0 or 0 = -- _ + %/10 = 0.088 (for i = -- 1).

In this case the solution may be developed in powers of the cube

root of J2 or _/J2 which is very ineffective for practical application.

We need a new approach.

VII. A remark. Insofar as we use a method of successive approxi-

mations, the most difficult c_ase look s like the case where n2 + in3 + jr

m

¢r----

Sun
6----

_- (?)

I-----

FIGURE 3. Decreasing Perigee Distance
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is identically zero for any values of i and j: it is a case of ¢o-ple

resonance. This case is, however, nothing but the case where the

earth is supposed to be a sphere and the sun is assumed to be fixed

in space. The case, however, permits an exact solution if we use para-

bolic coordinates (when the sun is fixed at infinity) or elliptic coor-

dinates (when the sun is fixed at a finite distance). In the two-

dimensional problem the perigee distance decreases secularly until

the satellite collides with the earth. (See Figure 3.)
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Special Computation Procedures

for Differential Equations

I. Introduction. Many problems of applied mathematics arise

naturally as differential equations. In most cases there is no hope

of finding an explicit, closed representation of the solution. Thus we

are led to the computer. However, the availability of high-speed

computers does not mean that "practical men" can give up the ana-

lytical study of differential equations.

Indeed, in some sense, the great advance in our computational

ability requires that we put more effort into the analytical study.

After all, twenty years ago we could only shrug our shoulders at

these problems. Now we can and do attempt to get approximate

results. And, in order to get computational results that are meaning-

ful, we must do some analysis.

In these lectures, I hope to present some of the ideas and results
in this area.

II. Ordinary differential equations. The simplest problem is the
Pure Initial-Value Problem

(II.1) y' = [(x,y), y(xo) = Yo.

Here y = y(x) may be a vector and then (II.1) represents a system

of equations. It is well known that almost every Initial-Value prob-

lem may be put in this form. For example, suppose we start with

179
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y_'_ = [(x,y,y', ...,y_,-l_),
(II.2)

y_ (Xo) = Y_ j = 0, 1, -- -, v - 1.

Then we set Z, = y, Z2 = y', -- -, Z, = y(,-l_, and we write (II.2) as

Zf = Z_,

Z_ = Z3,

(ii.l ')

z;__ = z,,

z;= [(x, z_, z2,..., z,),

Zi(xo) = Yo-', j = 1, 2,..., v.

We now turn to the question of numerical methods for approxi-

mating the solution y(x) of (II.1).

We assume that [(x, y) is continuous in (x, 2/) and satisfies a Lip-

schitz condition in y, i.e., there is a constant L such that

(II.3) Jlf(x,y) - [(x,z)jJ < LJJy - zll.

This condition assures us of the existence of a unique solution y(x)

in some neighborhood of x0. For those who are skeptical of such

mathematical niceties, let us consider two examples.

EXAMPLE 1. y' = yX/2, y(O) = O.

Then y_(x)=-0 and y2(x)= ¼x2 are solutions in the interval

0 -< x -< 1. Here we do not have a unique solution.

EXAMPLE 2. y' = 1 q-ye, y(0) = 0.

In this case y(x) = tan x and there is no solution at all in the

"larger" interval 0 -< x -< r.

Now, let an increment h be chosen; then we seek values Yk which

approximate y(kh q- Xo).

The simplest formula we can use is

(II.4) Yk+_ = Yk + hf(x,, Yk), Yo = Yo.

Here xk = Xo q- kh. This is an example of a Single-Step Method which

we write as



SPECIAL COMPUTATION PROCEDURES 181

(II.5) YL+I = YL + h4_(xL, YL; h).

From the form of (II.5) one might think that

_(XL, YL; h) = [(xL, YL)

is the only "natural" choice. However, let me point out that the

familiar Runge-Kutta method is also of this form, but with the more

general form of _b.

THEOREM 1. Let [(x, 31) be continuous in (x, y) and satisfy the Lip-

schitz condition (II.3). Moreover, let 4_(x,y; h) also satisfy a Lipschitz

condition in y. Then

(II.6) lim 4_(x,y,h) = [(x,y)
h-*O+

is a necessary and sufficient condition for the convergence of the

solution { Yk} of (II.5) to y(x-) in the limit as

h---,O, k---, _o, kh + xo--* x.

THEOREM 2. Let [(x,y) be continuous in (x,y) and satisfy the Lip-

schitz condition (II.3); let 4_(x,y; h) also satisfy a Lipschitz condition.

Moreover, let the "consistency" condition (II.6)be satisfied. Finally,

let the truncation error be 0 (hP), p > 0, i.e., if y (x) is the solution of (I I. 1 ),

then (if we have taken Xo = 0 by a translation of the x-axis)

y[ (k -4- 1)h] = y(kh) -4- h[¢(xL, y(kh); h) -4- O(hP) ].

Then, as h---, 0 and kh--_ x, we have

(II.7) _ YL - y(kh)]J = O(hP).

We will omit the proof of Theorem 1, as it is technically complicated.

However, let us give a proof of Theorem 2.

PROOF or THEOREM 2. Let

EL = YL -- y(kh).

Then, from (II.5) and (II.7) we have

EL+I = EL + h{ [,(xL, YL; h) - ,(xL, y(kh); h)] _- O(h p) }.

Therefore, since _ also satisfies a Lipschitz condition,

]JEL+I_ < IEL[ -}-hL{ _ELJJ + 0(hP) },
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i.e.,

or

or

IIEk+,ll< (1 + hL) IIEkll+ Mh'+_,

IIE,+lll --<(1 + hL) 2IIEk-lll + [(1 + hL) + 1]Mh p+I,

k

We sum the geometric progression and find that

That is

IIE,._II -< (1 -I-hL) k+l IIEoll +

S.V. PARTER

(1 + hL) k+l -- 1

l+hL-1

[ MIIIE,.lll --<ehL_+_' IIEoll+ -E hp "

Mh p+l.

If we now assume that E0 = 0, we obtain the desired result.

Having these two theorems, we will leave the topic of single-step

methods for the initial-value problem.

Of course, there are other methods of treating the initial-value

problem. Let us consider the Linear Multi-Step Methods. The sim-

plest such method is

(II.8) Yk+l = Yk-1 + 2hf(xk, Yk).

Notice that in this case we must specify both Y0 and Yv Now Y0 can

be taken as Yo, but it is difficult to specify Y_ exactly.

We now consider only the scalar case, i.e., y(x) is a scalar, not a

vector.

In general, we have constants a0, al, ..-, ak, S0, "", _k, and we use
the recurrence relation

ak Y.+k + ak-1 Y.+k-1 + "'" -t- ao Yn
(II.9)

= h{ _,[(Xk+.. Yk+.) + "'" + _o[(X.. Yn) },

or

k k

(II.9a) __, aj Y,+J = h _ _jf(x,+i, Y,+j).
.i=o .i=o
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Of course, we assume ak _ 0. If _k = 0, we say that (II.9) is an

"explicit" linear multi-step method. On the other hand, if _Sk_ 0,

then we have an "implicit" method.

EXAMPLE 3. Consider the linear multi-step method

3 Yn+2- 3Y.+1 + 1
(II.lO) Y.+3 + _ _ Y.-- 3hf(x.+2, Y.+2).

One can easily verify that--provided [(x, y) is nice enough--

3 1
y(x,+3) + _ y(x,+2) - 3y(x,+l) -k _ y(x,,) = 3hf(x,,y(x,)) -F O(h4).

That is, (II.10) is a consistent approximation to (II.1) and with a

small truncation error.

Consider the two problems

y' = -- y, y(O) = 1,

y' = y, y(0) = 1,

in the range 0 < x < 1 with h = 0.01. For those of you who have

access to a computer, I recommend these problems. You will find

them very instructive. They show that Theorem 2 which applies to

the single-step method, does not apply to an arbitrary multi-step
method.

In any case, a simple analysis--but one which is too lengthy to

give here--shows that the solutions of (II.10) are unstable and do

not converge to the solution of (II.1). Moreover, this is true even

in the simplest cases.

The results for the general Linear Multi-Step Method are too

complicated to prove in the short space of time we have here. How-

ever, they are easy enough to state. (See Henrici [1] for details.)
Let

k

(II.11) p(D = _ ai_ J.
j=o

We have a Stability Condition: For all _ which are roots of p(_) = O,

we must have

(II.11a) IFI --<1.

Moreover, if _ is a multiple root of p(O = O, we must have

(II.Xlb) {rl < 1.



184 S.V. PARTER

And, as before, we have a Consistency Condition: This condition--

in words--merely says that the solutions of (II.1), i.e., the solutions

of the differential equation "almost" satisfy the difference equa-

tion (II.9). It is rather easy to verify that a necessary condition for

consistency is

k

__,aj=O,
j=O

(II.12) k

j=0

DEFINITION. A linear multi-step method given by two sets of co-

efficients { a t }, { Bt } is called convergent if the error En = ] Yn - Y(Xn) 1

--* 0 as h--* o and n--- o_ in such a way that x,---x, provided only

Et--*O for j = 0, 1, ...,k- 1 and the function [(x,y) is continuous

in (x,y) for all y and Ix - x01 < b (for some b > 0) and also [(x,y)

satisfies a Lipschitz condition in y.

THEOREM 3. The linear multi-step method given by the two sets of

coefficients {aj}, {Bt} is convergent if and only if both the stability

condition (II.11a), (II.11b) and the consistency condition (II.12) are

satisfied.

THEOREM 4. Suppose the linear multi-step method (II.9) is con-

vergent. Let y(x) be a solution of (II.1). Assume also that

k

atY(X,+j) = h _ _jf(x,+j, y(x_+j)) + O(hP+l).
j=0

Then

[Eml = O(hP).

Now, let us mention another approach to our basic problem.

This approach is motivated by the fact that may good linear multi-

step methods are implicit, i. e., Bk # 0. Therefore in general the

solution of (II.9) is hard to compute. Thus, we are led to Predictor-

Corrector Methods of the form

k--1 k-1

YL, + _'_ aj Y,+t = h Y] bjf(Xn+j, Y,+t),
t=o j=o

(II.13) k k-1

j_=oaj Y.+j = h { pkf(X_+k, Y.*+k) + j_=o_t[ }, a_ # O.
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The general idea here is to use a high-order predictor formula

and a "stable" corrector formula.

Before we leave these initial-value problems, a few remarks are

in order.

The motivation for linear multi-step methods is clearly the de-

sire to use more accurate formulae. However, one should note that

these methods can lead to many complications. First of all, one

must have accurate methods for more "starting" values than are

implied by the problem. Also, there is the problem of stability.

Finally, there is a whole host of problems associated with the slow

decay of certain components of the error which have been intro-

duced by the linear multi-step method itself. Once more, let me

recommend the book by Henrici [1].

Now, let us say a few words about "boundary-value" problems.

Consider the problem

-- (py')' = f(x), 0 < x < 1,
(II.14)

y(0) = y(1) = 0,

where the function p(x) _ P0 > 0 is a differentiable function.

We take h =- 1/M, where M is an integer. Let Y1 represent an

approximation to y{jh), and let Pi+1/2 = P[(J + 1/2)h]. One could

try to approximate (II.14) by

Yo.= YM= O,

(II.15) - Pj-ll2 Yi-x + (Pi-,n + Pi+1/2) Yi - Pi+1/2 Y_+l

= h_[(xj).

Now we have two problems:

(1) Can we solve these equations for Y_, Y2, "", YM-_?

(2) Assuming the answer to (1) is yes, does the error

Ek=JYk-y(kh)J----,O as h--0, k--,_?

In both cases the answer is "yes"! Let us look at the first ques-

tion.

Consider a general tridiagonal system of linear equations of the

form Y0 = Y_ = 0:

o:Yi- _+ Yj + cj =
where

(II.16) bj > Jail + JcjJ.
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Then, when we look at the straight-forward elimination procedure,

we discover the following algorithm. Let

(II.17) Go-- Fo = 0,

(II.17a) Dk = b_ 4- a_ Gk-1, )

(II.17b) Gk = -- ck/D_,

Fk = (Qk - akF__O/Dk.

k = 1,2, ...,M- 1.

Then

(II.18a) YM-1 = FM-1

and for j < M- 1, we have

(II.18b) Yj = G1Yj+I + Fi.

Thus, our Equation (II.15) can be solved rather easily. Morover,

the condition (II.16) guarantees that this procedure is numerically
stable.

As for the second question, if we multiply (II.15) by Yj and sum

on j, we have (taking Ys = 0 for s < 0 and s > M)

__, [ Y_'Pi-i/2(Yi- Y_-t)+ Yj.Pi+_,2(Yj- Yj+_)] = __, h2[jYi,

or

J

or

<- -- (hE I[Jl . (hE iYj I .z),r(
(i) L n A P o

And, for any set Z j; j -- 0, 1, 2, .-., M, with Zo - Zm -- 0, we have

h E IZil '_< 2(1 -- cosTrh) h E j-l.
(J)

This last result can be established by elementary matrix theory.

Since

h "_ 1

2 (1 - cos 7rh) * _-_ as h --_ 0,
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we can claim the existence of a constant K > 0 so that

'1
Thus, using (II.19), we have

s [ (h_ Ihl _)"_ (h_ IYjl *),2
Po

i°e°

-< -- (hX: LSI')1,,.
P0

Let k > r. Then

Yk-- Yr= h 2 YJ Yi-, .
j=r+ 1

Therefore,

k

I Yk- Y_l <h Y]
j_r+l

2 /' 1/2

That is, using (II.20),

(II.21a) [Y(kh) - Y(rh) I < Ikh - rh I 1/2

And if r = 0,

(II.21b) [Yk[ =< K (h _ IrA 2)1/2.
po

• K (h EI/A")".
Po
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It is now an easy matter to prove the convergence of the { Yk} to

the solution of the boundary-value problem• The simplest approach

is merely to observe that the error Ek satisfies a similar difference

equation. However, in this case, the right-hand side [j-_0 as h--_0.
Hence
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h ZIfA2-_0 ash-_0

and the convergence follows from (II.21b).

III. Partial differential equations. Once more, let us consider the

Initial-Value Problem. Consider the special case of a first-order

linear system of the form

(III.1)

OU
-- = P(x, t; D) U,
Ot

U(x,0) = Uo(x).

Here, x= (xx, x2, ...,xn) and U is a vector (UI,/-72, ..., U_¢) and

P(x, t; D) is a matrix polynomial in the (O/Ox) with coefficients

depending on (x, t).

Let us look at a very simple special case--

OU OU

Ot Ox '

(III.2)

U(x, o) = [(x).

One can easily prove that the solution to this problem is

(III.2a) U(x, t) = [(x - t).

Indeed, to verify that (III.2a) is a solution (assuming that [(x) is

differentiable) is an exercise in Calculus.

Even though we know the solution of this problem, let us look

at an approximation

_2_(x, t -4- k) -- _(x, t) _(x -4- h, t) -- _(x, t)

k h '

which reduces to

(111.3) _(x,t + k) = (I+D _2_(x,t) - x a2(x + h,t)

where X = k/h. Repeated application of (III.3) leads to a formula

of the form

n n

(111.4) a2_(x, nk) = _ aj _-2_(x+ jh, O) = _ aJ(x + jh).
j=O j=0

The exact values of the coefficients a t are inessential for our present
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argument. The important fact is that the value of _(x, t) depends

only on the value of f(x) at points to the right of x. On the other

hand, from (III.2a), we see that the solution of the differential equa-

tion depends on a value of f(x) at a point to the/eft of x, namely

(x - t). It is now an easy matter to construct an initial function

f(x) which is very smooth and the solutions of (III.3) cannot pos-

sibly converge to f(x - t). For example, let f(x) > 0 for x < 0 and

f(x) = 0 for x > 0. Then, we see from (III.4) that _(x, nk) --- 0 for

all x > 0. On the other hand, U(x, nk) > 0 for all x < nk.

Consequently let us try another approach--

_(x, t + k) - a2_(x, t) _(x, t) - _(x - h, t)

k h '

which reduces to

(III.5) _2_(x,t+k) = (1- X)_2_(x,t)+X_(x-h,t).

In this case, an argument very similar to the one we have just

given shows that we must take X < 1.

These examples illustrate the general situation. As in the case of

ordinary differential equations, it is not enough to have a consistent

approximation to the differential equation. Moreover, the restric-

tions on the difference schemes are usually restrictions on ratios of

the step-lengths in the different coordinate directions.

Let us look at another example, the heat equation

OU O'aU
(III.6) Ot- Ox 2 ' U(x,O)=f(x),t>O, allx.

We try the difference scheme

_2_(x, t + k) - _2g(x, t)

k

1
- h2 { _(x - h, t) - 2 _(x, t) + _/_(x + h, t) }.

In this case, the necessary condition is

k 1
(III.7) h--_ < --_-- 2"

This result is particularly interesting because, unlike our earlier

results, there does not seem to be any obvious relationship between

(III.7) and the analytical properties of the solution of (III.6).
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Actually such relationships do exist: for instance, if (III.7) is satis-

fied, then

(III.8) sup l _2_(x, nk) I < supl _'(x,0) l,
x X

and the physically interesting solutions of (III.6) satisfies a similar

estimate. On the other hand, as we shall see, there are convergent

difference schemes for the heat equation which do not enjoy property

(III.8). Let me put it this way: Since (III.7) implies (III.8), it is

easy to prove that the solutions _2_(x, nk) of the difference scheme

converge to U(x,t), the solution of (III.6), provided that (III.7)

holds. However, it is not apparent that (III.7)" is a necessary condi-

tion for convergence. However, this is the case for the difference

equation proposed above.

Let us return to our general problem. If we select an h =

(hi, h2,...,h,) and k then a finite difference equation should give

us approximations to the solution U(x,t) at the lattice points

(jlhl, j2h2,..., j,h,, rk). Let _2_'(r) denote the "vector"

{ ___(j,h,,...,j,h,,rk)}_,i2 .../n=__

and let ]] _#(r)H denote some norm on these "vectors." For example,
we could have

]1_¢(r)H = sup ] _(j,h,, j2h2, .-.,jnh,,rk)],
i,h,

(III.9a)

or

(III.9b) 11 (r)II = h h2, . l  2 (j h ,j2h2, . . .,j,h,,rk) J2,
Js

etc.

If B is a linear operator (i.e., an infinite matrix in this case) acting

on these vectors, we define

NBxN
(III.10) IISll = sup

Ilxll

Suppose we have a finite-difference approximation to (III.1) of the

form

_¢(r-k 1) = B(r) _#(r)
(III.11)

_(jlh_,j2h2, .. .,j,h,, O) = Uo(j_h,,j2h2, . . .,j,h,).
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In (III.11) we should write _2_(r + 1; h) and B(r; h) since these

operators and vectors will depend on the lattice h and the increment

k, etc.

DEFImTION. We say that the family of operators {B(r; h) } is stable

in the interval 0 < t < T and in the ][ [[ norm if there is a constant

c, depending on T, such that

(III.12) HB(r;h) B(r- 1;h)...B(j+ 1;h) B(j;h)l[ <= C

for all r, j with

(III.12a) 0 < j < r < T/k.

The basic convergence argument is based on this notion and a sim-

ple argument which we saw earlier in our discussion of single-step

methods for ordinary differential equations.

THEOREM 5. Suppose (III.1) has a solution U(x, t). Let U(r) be the

"vector" determined by U(x, rk), i.e.,

U(r) = { V(jlhl, ...,jnhn, rk) }_l,Je,..-Jn ....

Assume that (III.11) is a "consistent" approximation to (III.1), i.e.

(III.13) U(r + 1} = B(r) U(r) + a(r),

where

(III.14) Ha(r) ll = O(kl+P), P > O.

Finally, assume that the family { B(r; h) } is stable for 0 < t < T in the

[[ I[ norm.

Then, for all 0 < t < T < oo of the form t = rk, we have

(III.15) [[U(r) - _2_(r)[[ = O(TkV).

PROOF. Let E(r)= U(r) - _2_(r). Then, from (III.13) we have

E(r + 1) = B(r) E(r) + a(r)

-- B(r) B(r - 1) E(r - 1) -k B(r) a(r - 1) + a(r)

= B(r) B(r- 1) ... B(0) E(0)

r

+ _ [B(r)B(r- 1)... B(j)]a(j-1) +a(r).
j=2

Since the family {B(r; h) } is stable, and E(0) = 0, we have



192 S.V. PARTER

liE(r) II --<CRO(kl+n) = C(rk)O(kn),

that is

_E(r) I <= CTO(kP),

Thus we have shown that, under reasonable conditions, stability

and consistency imply convergence. A natural question is--what

about the converse? In the appropriate theoretical setup, the answer

is that stability is in fact also necessary for convergence. Let me

refer you to the excellent book by Richtmyer [ 4]. Of course, as a

practical matter, stability is absolutely essential!

For general difference schemes, there is no obvious way to estab-

lish the stability or instability. However, for certain cases we do have

methods of analysis; and these results lead to useful"rules of thumb"

which may be applied in the more general cases.

Consider the case where P(x, t; D) has constant coefficients. That

is

oU

Ot

(III.16)

- P(D) U

s O'

= l__-0,,+_+Z..+_,=, A,,_..._, Ox_ • •. x_ U

where the A z_...,n are constant matrices.

Moreover, let us assume that the difference equation (III.11)

takes the form

(III.17) _2b(r + 1) = B "2x(r)

where B is a constant matrix. More specifically, we assume

c2b(j_ hl, . . .,j, hn; rk -4- k)

(III.18) = _ B_..._ 0£[ (j_ + lOk_,..., (Jn -k ln)hn; rk]
IIIL +112l +'" +llnl < R1

where the B,1 ..._nare constant matrices. Consider the matrix-valued
function

(III.19) t_(01,02, .--,0n) = Y'_B_,_..._,exp(iY'_i,i)-

A rather straightforward application of Fourier analysis, which can

be done in several ways, leads to the following conclusion: Let

the norm be chosen as in (III.9b). Then
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IB'I = maxI ..., on)II
Iojl__.

where JJJJF represents the Euclidean finite-dimensional matrix norm

of _r(0h02, ..-,0_).

Thus, our problem has been reduced to a finite-dimensional prob-

lem. This problem is still not trivial. In fact, it is sometimes rather

messy. However, we do have a method of analysis.
Let us return to our earlier examples. Consider the Equations

(III.2) and the difference equations suggested for its solution. For

the first, if we use Equation (III.3), we find that

_(0) = (I -}- X) -- Xe_

and

#(x) = (1 + 2x),

I/_'(r) I = (1 -{- 2x)r--, _ asr--,% rk<=T

if X is a constant. Thus the first method is unstable as well as non-

convergent.
In the other case we find that

fl(0) -- (1 - ).) -t- Xe-_,

Jfl(0) [ 2 ___[ 1 - ),(1 - cos 0) ]z + X"sin20

: 1 - 2X(1 - cos0) -t- X"(1 - 2cos0 Jr cos20) -t- X2sin20

-- 1 + 2X(X - 1) (1 - cos0).

Since 1 - cos 0 >_-0, max [_(0) J ___<1 if and only if ), -< 1. And, in this

case, maxJ_'(0) J = maxJ/_(0) J'.

Turning now to the heat equation (III.6) and the related differ-

ence equation, we find that

k

_(0) = 1 -- 2 _ (1 - cos0).

Thus _(0) is real and/_(0) =<1, while _(0) >= - 1 if and only if (III.7)

holds.

This analysis enables us to handle differential equations and dif-

ference equations with constant coefficients. But what about the

general problem of differential equations and difference equations

with variable coefficients? In the general case, we have the following

rule of thumb: For each value (x_ to), 0 < to < T, consider the dif-
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ferential equation and difference equations with all coefficients eval-

uated at (Xo, to). These difference equations are of the form we have

analyzed. And, if for (Xo, to) the corresponding difference equations

are "stable," then they are also stable in the variable coefficient case.

The validity of the above rule of thumb has not been established

in complete generality. However, there are some fairly general re-

sults justifying this procedure.

Before proceeding, let us point out that if, with a finite difference

equation of the form (III.11), which we write for short

_2_(r A- 1) = B_2_(r),

we associate the norm

U _2¢(r) II2 = hi. h2. h3..- hn_] I _'('", r) l 2,

then

(III.20) IIB II = sup IIB UI____= max U_(0b • .-, 0n) IIr,
[Iull

where I[ [[F is as before.
Let us now consider as a further example the wave equation

O2U O2U
(III.21) Ot2 -- OX2 .

We try the difference scheme

_+l _ 2_ + _2_'_-1 = _-1 - 2 _¢_ + _+1
(At) 2 (Ax) 2 '

where we write _2_(knx, nat) = _¢_. We transform the difference

equation to

(III.22) _+1 2 _- _n-_= k + _2(__1_ 2 _2_+ _'_+1),

where we have put _ = At/Ax. We could use a geometric argument

to establish stability criteria, since we already know that the solu-

tion of (III.21) is U = f(x + t) + g(x - t). The domain of depend-

ence argument tells us that for stability we must have X < 1. It is

important to recognize, however, that (III.22) is not of the form

(III.11). The vector _n+_ depends on both _2¢" and _n-_.

To avoid this difficulty, we write (III.22) as the system



SPECIAL COMPUTATION PROCEDURES 195

or

(III.26)

{1 -- _'_(1 - cos0) }2_-< 1,

-1=<1--_2(1--cos0)_-<1,

which istrue ifand only if_ _-<1.

Taking another approach, assume the solution of (III.22) is of

the form

(111.27) _'_ = #nei_°= gneiSS (AX = 1).

Substituting into (111.22) gives

#n+l_ 2_n+_.-1= Xz _[e__ 2 + e_].

Factoring #n-1 gives

(III.28) 2 _ 211 A- _,2(cos0 - 1)]g+ I = 0,

which is identical to (III.25).

IV. Practical problems in partial differential equations. Consider the

heat equation (III.6), but ask that it be satisfied in

O<x<l, t>0,

wZ -'= vL
(III.23)

v_'+i = _,2(v__1-4- v_+,) A- 2(1 - ),2)v_ - w_'.

The matrix t_(0) defined by (III.19) is given by

(III.24) B =

- 1 2(1 - _2) -4- 2;_2cos8

It is possible to analyze n_r(O) n, but we will not do it. Instead we

will study the necessary condition for stability, i.e., the eigenvalues

are less than or equal to one in absolute value. The eigenvalues

must satisfy

(III.25) 2_ 211 - _2(1 - cos0)]_-4-1 = 0.

Itfollowsimmediately that the product of#+ and __ must equal I;

ifthe roots are real,then they are eitherA- 1 or - I,or one islarger

than the other in absolute value. Complex roots can only be unity

in magnitude. This leads to the condition
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We then obtain

(IV.3)
1 + 2ah(cos0 -- 1)

5=
1 + 2(1 -- a)M1 -- cos0) "

It is clear that B ___<1 for all a, },, 0. To meet the stability condition

>_-- 1, it is necessary and sufficient that

(IV.4) (2a - 1)h =<1/2.

Note that if a ___<1/2, (IV.4) is no restriction on h, since _ is always

- 0; if a > 1/2. on the other hand, h is restricted.

To study the stability and convergence of (IV.2), you must make

a detailed study of the tri-diagonal matrix in an equation for the

error, and this gives the same result as (IV.4).

We now have a one parameter family of finite difference equations,

196

with conditions given

U(x, O) = [(x), 0 < x < 1,

(IV.l) U(0, t) -- g(t),

U(1, t) = h(t), t > 0.

In the notation of (III.22), write the following family of difference

equations:

At

O').n+l
_-1 -- 2 _]_'_-t- _+1 a2_k_+_-- 2 a2_k+t + _,+_

= a (Ax) 2 + (1 -- a) (Ax) 2 ,

where X = _t/(hx)2 and 0 < a < 1. Rewriting, we obtain

h(1 a) _"+' ± [1 -{-2(1 --a)_,]_+' --X(1 --a) _'_k+_-- -- /_k-1 7-

(IV.2)

= ax[ __,- 2_-!- a_+,] q_ O)_k,

which, when applied to a system of mesh points, yields a tri-diagonal

system of linear equations in terms of the known boundary condi-

tions, which can be solved for any a. Is the system stable?

As before, assume the solution of (IV.2) is

= t_e 0".
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and in particular, if we take a < 1/2, the equations are uncondi-

tionally stable.

To prove the convergence of the method for a = 0, consider

(IV.5) o_k-{-1 _ =. r_..+l _ 2 _2_+1 + o_.+11
-- ^ L_k-1 _k+lJ

• _n+land study maxk _+1 Then either maxk k occurs on the bound-

ary, or maxk _ >_-maxk _+1. For, suppose maxk _n+lk is not on

the boundary. At the interior point where _+1 is a maximum,

- O_ln+l < 0.--k-1_1"+1 2 _Z +_ + --k+l =

Then, since X > 0, °2_'_+1=< _. But this was the k for which _+1

= maxk _]_+1. Repeating the argument for n - 1, n -- 2,..., 0, we
conclude

-<max{ l[l,lgl,lhl},

(IV.6) 0 < nN, 0 < t < N_t,

O<k<M, 0<x<l,

which implies the stability of the method.

To see that this insures convergence, consider the error equation

[ ]_n+l o ]_n+l En+t](IV.7) E_ +_ -- Ef = X i_,t_t -- _k -{- --k+lJ _11_0"_,

where [_J_-<L(St) a+P, p>0, and E °=0, E_= E_=0. Let

max, Ef +x = E] +l. If j _ 0, j _ M, then

(IV.8) IET+Xl=<IETI+

by arguments similar to those used to prove (IV.6). Now it is

straightforward to show by continued inequalities that

(IV.9) maxJE_+_J, < max [E_J + LAt _+p,

and thus convergence is assured.

As an example of a two-dimensional problem, consider the heat

equation (see [ 5], [ 6], and [ 7])

(IV.10) OU 02 U 02 U
Ot = Ox----T + Oy"

for t > O, and (x, y) in some region R. The initial and boundary con-

ditions are written in a form analogous to (IV.l).
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If we write _2_,j for _2L(kAx, jay, nat), we get the difference equa-

tion

_/n+l n

(IV.11) _k,j - _2/k,j _2/k-_,_ - 2 _k,j + _2_h+l,j
_t = (Ax)"

_n+2 _]n+2 _n+2
k,j-1 -- 2 _i.j + k,j+l

A- (Ay) 2 ,

The superscripts on the right-hand side have been temporarily o-

mitted. If we put the superscript n A-1 on each term, we could

prove a min-max principle similar to (IV.6) and the corresponding

convergence results, but the resulting system of equations are diffi-

cult to solve. To avoid this, consider the case of (IV.11) written as

_)/nA-2 G)zn-t-1 G)/n+l _-)/n-t-1 __ _)/n+l

(IV.12) _k,j - _k,j = _k-lz-2 _,j . _k+_,j
At (Ax) 2

_-gzn+2 Ogzn+2. _-')_n+2
-- _¢.'k,j T _'k,j+lA- _k,j-i 2

(Ay) 2

where the superscript changes are obvious. This gives a tri-diagonal

system which must be inverted for each value of k. Not carefully the

difference in (IV.11) written as (IV.12) or written as

G)/n+l n _')/n+ 1 _)/n+ 1 G)zn-t- l

(IV.13) _,i --_(k,j= ¢¢_k-l,j-- 2 ,,_k,j + _k+l,j
At ( Ax) .2

-_- (Ay) 2

The use of (IV.13), followed by (IV.12), forms the well-known alter-

nating direction method, which is stable and therefore converges,

provided at is given the same value for every pair of steps. The proof

of stability is similar to that used for (IV.2).

To illustrate a practical problem involving an elliptic equation,

a boundary value problem, consider

02U
0 2U+ __ =f(x,y)

(IV.14) Ox 2 Oy2

in a region R with U = g(x, y) on the boundary of R.

As a first step, we must pick Ax and Ay, i.e., set up a basic lattice in

R.

There are various ways to handle an irregular boundary. We can
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modify the boundary to fit the mesh, i.e., use only mesh points which

are within the boundary and estimate the influence of the boundary

on the nearest interior mesh point by interpolation. Alternately, we

can modify our difference equation for interior points near the

boundary. Let us assume that we take the former method. Then we

have the following formulation: If (kAx, jAy) is an interior point,

Am_)L -- _2_k+lj - 2 _2(k,j + _'21k-lj
(ax) 2

(iv.15)
+ _,,i-1 - 2 _.j + _,._+1= hj.

(ay) 2

If kax, jay is a boundary point, then _k,j is known.

Most of the effort in research involving (IV.15) is in finding

methods for solving the resulting linear systems. However, it is easy

to prove convergence of (IV.15) as follows:

Observe that if fk,j > 0 for all k,j, then the maximum of _,.j is

assumed on the boundary. The proof is by contradiction. Suppose

the maximum is interior. Then, if it is at the point k,j, the left-hand

side of (IV.15) is less than zero. But [(x,y) > O. Then (IV.15) is

satisfied only if both sides are zero. Extending consideration to the

neighboring points, then to their neighboring points, etc., it is clear

that the maximum of ¢2[k,j cannot occur in the interior of R unless

[-= 0 and _2_ is constant, including the boundary points.

Similar results follow for fk,j < 0 in R. We conclude that min vkj

must occur on the boundary. These results imply the existence of a

solution of the Equations (IV.15), since they are a linear system of

equations in as many unknowns for which either there is a solution,

or there exists a nontrivial solution of the homogeneous equation.

But there is no such nontrivial solution, in view of the above results.

Let

(kax) 2+ (jay) 2
(IV.16) Wk.i = 4 '

which is defined everywhere. We find that

(IV.17) ahw = 1.

: max_h,jl and _2L be a solution of am _)L =/. Then

(IV.18) Ah(wF-- _) > O,
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which implies that max (wF- _¢) occurs on the boundary. Hence

max(_kj) --<(r2/4)F A- max l_¢l,
bdy

where r is at least the radius of the smallest circle which encloses R.

Similarly, we can show that Ah( _¢ -- wF) ___<0, and hence

max I _2_,jI < Cr 2F q- max I _,
bdy

and convergence is assured by applying this estimate to the error.

V. Inversion of a matrix. In general we have large matrices to in-

vert. How do we invert them? Let us write a typical matrix in a par-
ticular structural form.

Write the matrix V = (v_j) as a compound vector:

V_ (v_i

• °

(V.1) V-- where Vi =

V,, \ v,,

i.e., we arrange everything by lines. Vj is the vector of unknowns in
the jth line of any of the typical linear systems discussed above.

Then the problem takes the form

(V.2) A V = Y

where A is a matrix, V is the vector of unknowns (V.1), and Y is a

vector of known values arising from the boundary conditions•

The matrix A has the following structure:

D1 F1 0

E2 D2 F2

(V.3) A= =D+E+F.

0 Fm-1

E, Dm
D w

It is a block tri-diagonal matrix, which can be written as the sum of
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three matrices, D, E, and F, as in (V.3). The matrices Dj are again

tri-diagonal, and therefore are particularly easy to invert.

An iterative method (see the excellent book [5] by Varga) for

finding the solution of a problem written in the form (V.2) is to write

A--P-N,

assuming the p-i is easily inverted and A is nonsingular. (V.2)

becomes

(V.4) PV= NV-}- Y,

and we obtain an iterative equation by placing superscripts as

shown:

(V.5) PV _'+'_= NV C'_+ Y.

If we define the error E _'_= V _'_- V, (V.4) and (V.5) give

(V.6) E C'+l_ = (P-1N)'+lEC°_.

From this it follows that the iterative method will be convergent if

max JxJ < 1 for all X which are eigenvalues of P-1N, which is equiv-

alent to: For all X such that det { _,P - N } = 0.

The value of X, if either of these conditions is satisfied, enables us

to estimate the "cost" of alternative methods of iteration. Suppose

we have two iteration schemes: (a) A - Po - No with error E0_'_ and

X0 = max [eigenvalue of PolNo[ and (b) A = Pl -- N1 with error

E_ _ and X: = max I eigenvalue of P/-1N11 . Then it can be shown

that

(V.7) IIE(;+"II_ x_+'llE,(°'ll, k = 0 or 1.

Taking the logarithm of (V.7),

{llE(;÷l,ll
log \ _ .]

v+l,
log X_

which tells us how many iterations it would take to accomplish a

fixed-ratio decrease in the norm of the error. It is therefore impor-

tant to be able to estimate the value of X.

To apply iteration to our problem, write P= D and N=

- (E-k F), and we obtain what is known as the Jacobi block itera-

tion method:
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(V.9) DV ('+1_ - (E + F) V (_ + Y.

As an alternative but closely related method, consider the Successive

Over-Relaxation method--SOR. Here

p=_l (D+_E),
_0

N-- I[(I__)D__F],
09

where _ is some real number. This gives the iteration scheme

(V.10) (D + o_E) V (_+1_= [ (1 - o_)D + _F]V (_ + _Y.

Since E is block lower triangular, we can invert D + wE if we know

the D71.

There is a relationship between the eigenvalues associated with

each of the above methods which is shown in the following:

THEOREM 6. Let ), = max leigenvalue of Jacobi method I and let

= max I eigenvalue o/SOR method. Then

(u-{-_--1)2=_2_2 u.

PROOF. _ arises as a root of

XD1 F1

E2 _D2 F2

(V.11)

and u is a root of

tt + co -- ID1
(.0

ttE2

(V.12)

0
E.,

F1

tt -'{-¢o -- 1D2
O_

Fm-1

uE.,

=0,

0

=0.
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Forming the matrix

1

2

T(_) -_

203

we obtain

,u+o0 -- 1D1
tad

#aE2
O0

0

which we call Qa. Now

(_a+o0-- 1)D 1O/

O0

2 E

a _2

a-lF_

_taEm

0

O0

F1

_Em
O0

If we put a_ = 1 and compare this with (V.11), we have the result

stated in the Theorem. There are two interesting cases to consider in
the SOR Method.

Case (i). o0= 1. Then tz = _2, and the SOR method is seen to be

superior to Jacobi because (a) there is a reduced computer storage

requirement, and (b) this method is approximately twice as fast as

Jacobi, in view of (V.8).

Case (ii). Let o0= optimum value = o0b- One can show that 1 < o0b
<2.

0

m--1
O/

and computing IT<._IQIT_¢ I, where Q is the determinant (V.12),
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For the finite difference equation for the Laplacian operator, A is

positive definite, and D is positive definite. Thus the Jacobi method

eigenvalue is given by

I((E + F)X, X)[),_ max
x (DX, X)

To conclude, let us consider the alternating direction method,

discussed earlier, as applied to the Laplace equation.
Let us define the matrices H and V so that

(Hu)k,i = -- {uk-lj -- 2ukj + Uk+lj},

(Vu)_j = - {ukj-1 - 2ukj + uk.i+l }.

Then Equation (IV.14) can he written in the form

(o,H + OyV)X= Y,(V.13)

where

Ay 2 AX 2

0, = 2(Ax 2 -4-Ay2), t_y: 2(AX 2 -4-AY2)'

and X is a vector of unknowns. Writing (V.13) as (H1-4- V1)X = Y,
we see our aim is to invert the matrix H1 + V1, a positive definite

matrix, where H1 and 171are positive definite themselves. To do this,

put

(H1-4- rI) U m+1/2= (rI - V1) U m-4-4-Y,

( 171-4-rI) U m+l = (rI - H1) U m+1/2-4- Y,

with r > 0. The true solution satisfies both of these equations for

any value of r. The error satisfies

E m+l = ( V1-4- rI) -1 (rI - H1)(H1 + rI) -1 (rI - V1)E "_=- WE m.

The dominant eigenvalue of W can he estimated in two particular

cases.
Case I. If the region R is a rectangle, H and V commute, and thus

every eigenvalue of W is of the form

(r--v,) (r-hi)

(v,- r) (hi+r)'

which is always less than 1 in magnitude, since each factor is less
than one.
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Case II. H and V do not commute. Then take

(rI + V_) W(rI + V1) -_ = Wo.

This has the same eigenvalues as W. However

Wo = [ (rI - HI) (r1-4- H1) -_] [ (rI - Vl) (r1-4- V_) -x].

The terms in both brackets commute separately. Then

liw011=<II (rI - H1)(rI + H_)-_U II(rI - V1)(rI -J- V1)-Xll.

Since the spectral radius of a symmetric matrix is its norm, and the

spectral radius of any matrix is less than or equal to its JJIJ we con-

clude, as above: The method is convergent.
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N67:4 08
The Two Variable Expansion Procedure

for the Approximate Solution

of Certain Nonlinear Differential Equations

I. Introduction. This chapter is a revised version of the author's

(1962) lecture notes(1) which concerned an expansion procedure

using two time scales for the asymptotic solution valid for long

times of oscillations subject to small nonlinear forces.

A brief account of this two variable expansion procedure was

also given in [5]. It should be pointed out that the material in

the author's (1961) thesis [13], which is the basis of all the above

publications, reflected to a great extent original ideas and sug-

gestions by J. D. Cole.

In the study of oscillations for which a linear restoring force is

perturbed by small nonlinear forces, one usually encounters two

distinct groupings of the constants appearing in the problem into
combinations with dimensions of time.

For example, for the case where the small perturbation is a

damping, one time scale measures the relatively small period of

the harmonic oscillations which are produced for zero damping,

while the other scale determines the period over which the effect

of damping becomes appreciable.

(1) These are reported in [14]. The work in [13] and [14] was sponsored by
the U.S. Air Force under Grant No. AF-AFOSR-62-256 and by the Douglas
Aircraft Co., Inc., under Independent Research and Development Fund No.
81225-274 51953.
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In the expansion procedure presented here two dimensionless

time-like variables whose ratio is the small parameter of the prob-

lem are introduced explicitly in the calculations. If one treats these

two times as distinct independent variables one can transform the

initial value problem for an ordinary differential equation to one

involving a partial differential equation in two times. The asymp-

totic solution of the transformed problem involves certain inde-

terminate functions which are then defined by postulating that the

problem possesses a consistent asymptotic expansion which is uni-

formly valid for times of the order of the reciprocal of the small

parameter.

In [13], the close relationship of the two variable method to the

method of averaging of Krylov and Bogoliubov [16], and the

technique discussed by Kuzmak [17], was pointed out. In [14] the

more recent work of Struble [25], was also mentioned as being

related. It is difficult to ascertain the precise origin of the idea of

introducing two time variables (either explicitly as done here, or

implicitly as in the method of averaging) in the development of an

approximate solution. This concept which is implicit at least in

all the work cited above, also appears in more recent publications

dealing with the same problem as well as in other contexts.

The significant recent contribution to the problem (in English)

has been the work of Bogoliubov and Mitropolsky [2], in which

the theoretical framework of the method of averaging is discussed

in detail and the original ideas of Krylov and Bogoliubov [16],

extended and modified.

The existence of such a theoretical background obviates in a

sense the need for pursuing a similar aspect of the present work.

What has been attempted instead, is to cast the two variable

method into a framework which is a generalization of the procedure

of Lindstedt for periodic solutions, as reported in [21]. In so doing,

it has also been attempted to compare and contrast the proposed

approach to the work of Kaplun and Lagerstrom [12], in singular

perturbations.

The relation between the two variable expansion and the modified

method of averaging is discussed by Morrison in [20]. He reviews

both methods and gives explicit formulas showing the equivalence

of the results of both methods up to the second approximation.

Morrison contrasts the generality of the modified method of av-
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eraging to the relative simplicity of the two variable expansion

procedure which would lead one to expect the latter to be less
comprehensive in its applicability. It will be indicated in these

notes (although no general proof will be attempted) that once the

proper choice of variables is made, the two variable expansion pro-

cedure is applicable even to those cases where no general results

are available and cursory examination indicates a failure of the

expansion procedure.

We first consider the autonomous initial value problem (writing

y for dy/dt, y_ for d2y/dt 2, etc.)

(I.la) y¢+ y + _f(y, y) = O,

(I.lb) y(0) = a,

(I.lc) y(0) - b.

where _<< 1, and derive an asymptotic representation of the solu-

tion to O(e) uniformly valid for times of ,*rder -1. These general

results are then applied to several specific examples of perturbation

functions of the type given in (I.la). We next consider various

examples where f may have a more general form than in (I.la)

for instance by involving the time or _ or both. These examples

are chosen in order to show how, after some preliminary considera-

tions, the procedure can be used for these more general cases.

Finally, we investigate a class of problems in celestial mechanics,

where the motion is dominated by a central force field with small

perturbations. These problems are shown to be essentially equiva-

lent to (I.la) with a more general form for f, and two simple ex-

amples are worked out.

The method discussed in these notes has also been applied by

Eckstein, Shi and Kevorkian in [6] and [7] to two quite general

satellite problems. In fact, in the latter reference it is shown that

one needs three time variables to describe the behavior of the solu-

tion adequately for long times.

Other authors, e.g., Benney in [1], and Bretherton in [3], have

used similar methods in problems of fluid mechanics, and references

to the application of multiple-scale expansions for problems in

plasma dynamics are given by McCune in [18].

II. Bounded oscillations. Formulation of the problem.

a. General Remarks. Consider the initial value problem
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(II.la) Y -I- y + _/(Y,Y) = 0, t >_-0,

(II.lb) y(0) = a,

(II.lc) y(0) = b.

Where E is a very small positive constant and a, b are constants

independent of _. There is no loss of generality in assuming that

b = 0 in (II.lc) for the autonomous equation (II.la) as this merely

fixes the origin of time.

The problem (II.1) may be regarded as the dimensionless formu-

lation of the equation of motion of a mechanical system, say, con-

sisting of a mass undergoing almost harmonic oscillations. Linearity

is destroyed by the presence of a small perturbative force which

may depend in a general way upon the displacement y and velocity y.

The applicability of the initial value problem (II.1) is by no

means restricted to that of nonlinear oscillations of systems with

one degree of freedom. Many problems of interest in celestial

mechanics are characterized by the fact that the motion in question

is influenced by a predominantly central force field with small

perturbations. Such is the case, for example, for the motion of a

satellite around a planet when the effects of a thin atmosphere, a

distant sun, or a slightly nonspherical gravitational field are con-

sidered. It will be shown in §V that in terms of appropriate vari-

ables the above "almost Keplerian" problems are essentially(2)

equivalent to the initial value problem (II.1).

To fix ideas, consider the following initial value problem de-

scribing the motion of a particle of mass m restrained by a linear

spring and damped by a force proportional to the cube of the speed:

(II.2a) m_- -}- ky_- l \_-_/ = 0,

(II.2b) _-(0) = A,

d_ 7

(II.2c) -_-JT=0 = 0.

In the above m, k, l and A are dimensional constants and y- and

(2) Actually, one is led to a slightly more general case than (II.1) where f may
also depend on _ and t as well as other dependent variables (defined by subsidiary
first order equations) which reduce to constants when _ = 0. The ideas of the
present method apply equally well for these cases.
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t-dimensional variables. A dimensional analysis of the four con-

stants appearing in this problem shows that there are two inde-

pendent time scales which we may choose as

(II.3a) T1 = (re�k) 1/_,

(II.3b) T2 = m2/klA 2.

Note that we can always form a third time scale T3 by multiplying

T1 by the dimensionless ratio

(II.3c) _ = T,/T2 = lA 2kl/2m -3/2.

This ratio measures the relative importance of the damping and

spring forces and the case e << 1, which is of interest here, corresponds

to "small damping."

The time scale T_ is a measure of the period of the oscillatory

behavior of the system produced by the spring, while T2 measures

the period after which the cumulative effects of damping become

important. The existence, in the physical context of this problem,

of these two time scales is a fundamental feature of the method

proposed here and will be further elaborated subsequently in this

section. For the present purposes let us choose A and T_ as the

basic length and time scales to define the following normalized
variables:

(II.4a) t = t/T1,

(II.4b) y = y/A

in terms of which the initial value problem (II.2) reduces to

(cf. (II.1)):

(II.5a) _ +y ____:_3 = 0,

(II.5b) y(0) = 1,

(II.5c) $(0) = 0.

From the physical content of (II.5) it is obvious that the solu-

tion y(t, _) is a bounded function of time. In general, it is easy to

set down sufficient conditions on the function [ such that the solu-

tion of the problem (II.1) be bounded. For example, by considering

the solution curves in the phase plane, (II.la) reduces to

(II.6a) R dR _ _Vf(y, V)
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where

(II.6b)

(II.6c)

211

R = (y2+ V2)1/2,

V = dy/dt.

Thus, a sufficient condition for y to be bounded is that there exist

some R0 < _ such that dR/dt < 0 whenever R > R0. Such a condition

is easily tested for any given f using (II.6a), and in this section

we will consider only functions f having this property.

b. Initially Valid Expansions, (Limit Process Expansions). Let

y denote the exact solution of (II.1). We wish to define an ex-

pression which approximates y to a degree of accuracy which de-

pends upon the smallness of _. This is accomplished by the asymp-

totic expansion of y in the limit as _--_ 0 (cf. [10] for definitions).

Let {_n(D } be an asymptotic sequence as _0 with _0 = 1. We

say that

N

(II.7) h(_(t, _) = _ hn(t)_n(_)
n=O

is an "initially valid" asymptotic expansion of y with respect to

the sequence {_n } if the hn are derived from y by the successive

application of the following limit process for each N = 0,1, 2... :

(II.8) lim [y(t, _) - h(_(t,_) ] = O, t fixed; t < o_.

For a given function y(t,_) and a suitable given sequence {_},

the h_ are unique if they exist. However, here y is known only to

the extent that it is the solution of the differential equation (II.1),

and the sequence {_, } can be somewhat arbitrary.

It is plausible (and quite often true) that for physically meaningful

differential equations the h_ are the solutions of differential equa-

tions obtained by the recursive application of the limit process

(II.8) to the original differential equation. For lack of any precise

conditions on problems where this interchange of limits is valid,

we shall merely regard it as a very plausible conjecture.

is easy to verify that for equation (II.1) only the sequence

will lead to nontrivial equations for the h_, and these are

_i.9a) ho + ho = O,

(II.9b) hi + hi = - f(ho, tio),
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(II.9c) h2 + h2 = - hi/y (ho, ]/o) - Iilfy(ho, ho),

(where fy(y, y) = 0/(y, :y)/Oy and fy(y, y) = af(y, y)/0y). The general

term on the right-hand side of the equation for h, cannot be given

concisely, but can he computed for each value of n by expanding

[ in its Taylor series in the neighborhood of the arguments ho, ho.

Equations (II.lb) and (II.lc) imply that the h, satisfy the initial

conditions

(II.10a) h0(0) -- a, h.(0) = 0, n _ 0,

(II.lOb) h.(0) = 0.

(Note: b = 0.) The solution of (II.9a) satisfying the conditions

(II.10) is ho= acost. Since h0 is periodic, we may represent the

the right-hand side of (II.9b) by its Fourier series expansion.

(II.11a) ao _ [a.cos nt -F b.sin nt]
-/(ho,]_o) = _-F .=i

where

(II.11b) If0 "a, = - - [(a cos t, -- a sin t) cos nt dt,
7f

(II.llc) b. 1 (2.= -- - [(a cos t, -- a sin t) sin nt dt.
7r jo

In general the Fourier series (II.11a) will be finite. For example,

this is the case if [ is a polynomial in y and y.

The solution of (II.9b) satisfying the appropriate initial condi-

tion is given below in terms of the known coefficients a, and b.,

which will have been determined by (II.11);

7 : an ]COS,hi= [_--_21_n2jSint- [2-F_21

(II.12) _2 1q- 1 - n 2 (a,cos nt q- b, sin nt)
=

a0

t (alsin t -- blcos t) + -_-.+g

In a similar manner all the h. can be successively computed.
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We immediately notice the presence of the "mixed-secular"

terms - (al/2) tsint and - (bJ2) tcost in (II.12). In order to

show how these terms arise in the expansion procedure let us

choose [ = 2y.

For this choice of [ the first two terms in the expansion for h are

(II.13) h (1) -- h0-k _hl = acost + _a(sint - t cost)

whereas the exact solution of (II.1) is

(II.14) y = ae-"[cos(1 - _2)l/2t-k _ (1 - 2)-1/2sin( 1 _ 2)1/2t]"

For this example we can directly verify that h0 + _hl is the initially

valid expansion of (II.14) to order c, and that the mixed-secular

term -_atcost arises from the nonuniform representation of the

term ae-"cos(1- _2)1/2t for large times. Without computing the

explicit formulas for the other hn, let us note that further mixed-

secular terms will appear in each of the hn, and it is easy to verify

for this linear equation that these terms are contributed by the non-

uniform expansion of the terms _-", sin(1 -- e2)1/2t and cos(1 -- e2)l/2t

of the exact solution.

Although the expansion (II.13) for h is not uniformly valid for

large times, it is a valid representation of (II.14) for any finite

time interval and is analogous to an "inner expansion"(3) for a

boundary-value singular perturbation problem as defined by Kaplun

and Lagerstrom in [12]. To point out this analogy, let us note that

as _--_ 0 for any fixed value of T, the difference between the exact

solution and the asymptotic expansion tends to zero uniformly over

the interval 0 -< t _< T.

If we now transform the independent variable t to t'--_t, the

domain of validity of the asymptotic expansion maps into the tri-
angular region of the e, t plane defined by 0 < t < _T.

This is in exact analogy with the domain of validity of an inner

expansion for a boundary value problem in which t corresponds

to the outer variable.

c. The Nonexistence of a Limit Process Expansion Valid for Long

Times. In view of the analogy between the inner expansion of a

(3) Here and in the ensuing discussion concepts and definitions from the theory
of Kaplun and Lagerstrom in [12] for matched asymptotic expansions will often
be invoked.
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singular perturbation problem and our initially valid expansion,

it is natural to ask whether there exists a corresponding strict

analogy between an outer expansion as defined by Kaplun and

Lagerstrom in [12] and an expansion which will, for our case, be

valid for large times. Unfortunately, such an analogy does not exist,

and the reason for this will be discussed in some detail as it pro-

vides a great deal of insight into what will be needed to approximate

the solution over long intervals of time.

Superficially, it is easy to verify that there does not exist a limit

process by which a set of meaningful limiting differential equations,

valid for large times, can be derived from (II.1). As will be shown

presently, this fact is a reflection of the structure of the exact

solution.

Consider a typical term of the form

(II.15) y = S(_t; c) P(t; _)

where S represents a bounded, slowly varying amplitude modulating

a periodic function P whose frequency is _ = 1 + O(D. For example,

for the linear case where /= 22, S = e -'t and P = cos(1 - _2)1/2t,

and in general we expect the solution of (II.1) to consist of various
combinations of such terms.

We wish to approximate y asymptotically as _--_ 0 uniformly for

large times, where the extent of the domain of validity in t will

be defined more precisely later on. It is clear that for no limit

process expansion in which ct--_ 0 as _ --_ 0 can one uniformly repre-

sent S for large times, since all such expansions are equivalent to

the Taylor series of S in the neighborhood of the origin.

In fact, a necessary condition for the development of S in an

expansion valid for large times is use of a limit process wherein

t = _t is held fixed as e--_ 0. Thus, the following expansion

N

(II.16a) S = Z Sn(_ _n + O(_N+I)
n=0

follows from a knowledge of S by the repeated application of the

limit process (with t fixed, t _ 0)

(II.16b) lim S(d; _) - __, Sn(De n = 0
_0 n=O
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for each N = 0, 1, 2, ....

Barring nonuniformities for small times, a most unlikely oc-

currence for the present problem, the representation (II.16a)

for S is uniformly valid over the interval 0 < t < T(D for some

T(e) where ,T(,)= 0(1). For future reference we denote the

above domain in t by D(,-I).

If, in addition, (II.16b) leads to a set of Sn each of which is a
bounded function of t, then (II.16a) is uniformly valid for all t

independently of ,_
Unfortunately, t or any slow variable which corresponds to

t---co as ,---0 is totally unsuitable for describing the long-term

behavior of the periodic function P. For, consider the Fourier

series of P

(II.17) P(t; ,) = c0(t___)}+ _ [c,(Dcosn_ (Dt + dn(_) sin n_ (Dt]
2 n_l

where we assume that the frequency _ may be asymptotically

developed as

N

(II.18) co = 1 + Y'_-_oi,i + 0(, N+')
n=l

for each N= 1,2,....

From (II.17) we see that if t is replaced by t'/, (or any other

slow variable), the limit process in which t is finite as _---0 (i.e.,

t--- _o) does not exist for any of the trigonometric terms involved

in (II.17).

In fact, the answer to the question of the uniform representation

for large times of a periodic function such as P defined by a dif-

ferential equation such as (II.1) for the special case in which

S = constant is given by the method of Lindstedt as presented

in [21]. Briefly, this involves transforming the independent vari-

able t to t + according to

(II.19) t + = (1+ i=l_°ie' + O(J a+l) t

in (II.1), which is then solved recursively using a limit process

whereby t+ is now held fixed as _--- 0. The unknown coefficients
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o_i occurring in the "stretched" variable t + are determined by

requiring each term in the asymptotic development of P to be

periodic. This development is then asymptotically equal to the

one obtained by applying the same limit process to the exact

function defined by (II.17) with _ as expanded in (II.18).

More precisely, let the coefficients cnG) and dn(_) in (II.17) have

the following asymptotic expansions in powers of c:

N

(II.20a) c_(_) = _ c_c i + o(cN+l),
iffi0

/V

(II.20b) dnG) = _ d_i_ i + 0GN+X),
iffi0

where the c,i and d_ are numbers independent of _. Then the

asymptotic expansion of P to any order cN as obtained by the
method of Lindstedt will be

N

(II.21a) P(t; _) = __, Pi(t+)_ i + O(_ N+I)

iffi0

where the Pi are

(II.21b) Pi(t +) =__ +Coi_ (c_icosnt + -t- d,,,sinnt +)

and t + is defined by (II.19) with M = N+ 1.

We note incidentally that o_(E), which is not in general known

a priori for a periodic function defined by an initial value problem,

can be determined asymptotically only to one order higher than

the expansion for P. This is a consequence of the conditions which

define _, namely that the P_+I be periodic.

We shall next calculate the domain of validity in t for the ex-

pansion (II.21a) with the cn, d_ and t+ as defined by (II.20a),

(II.20b) and (II.19) respectively. Let us compute RN, the difference

between the exact value of P and its expansion to order N

N

RN = P(t; _) -- Y:. P=(t+)tL
nffi0

Use of the various definitions in (II.17), (II.20) and (II.21) in

the above and some manipulation yields:
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RN = _ Co(0 - Co_ m

N

+ _,= [c.(cosno_t--cosnt +) + (c_(,) -- .-o_--:_c--'_')c°snt+

N

+d.(sinmot-sinnt+)+(d.(,)-__.od., ") sinnt+].

Now since wt - t+ = o(_N+2t) whenever (II.21a) is given to order

N, we conclude by using the following trigonometric identities

mot - cos nt + = - 2 sin 2 (_ot+ t+) sin 2 (_ot- t+),COS

+ n

sinno_t- sinnt+ = 2c°sn z (_0t+ t )sin_ (_0t-t+),

that

RN
--g- = O(d + O(_2t) as E--_0.

Since RNt -s must be O(D in order for (II.21a) to be the asymp-

totic development of (II.17), we conclude that with the c,, d, and

00, as defined here, (II.21a) is uniformly valid for t belonging to
D(t -1) also.

We have shown that mutually contradictory requirements dictate
the choice of variables for the uniform development for long times

for each of the two types of functions that would in general appear
simultaneously in the solution of (II.1). This means that the asymp-

totic development of the solution cannot be derived by a limit

process expansion in terms of either of these variables, and strongly

suggeststhe need of an expansion procedure involving the two times
t +, and t simultaneously.

d. An Expansion in Terms of Two Times. It is clear from the

discussion in the preceding section that one should use the product

of the asymptotic expansions for S and P as given in (II.16) and

(II.21a) respectively in order to represent the function defined by
(II.15).

The product of (II.16)and (II.21a)gives

N i

(II.22) Y= _,-o (k_--oS'`_- pi_,(t +) )i + 0,,N+I).

The reader can easily verify that (II.22):
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(i) is an asymptotic expansion of y as e--,0 (cf. [10, pp. 11-13],

uniformly valid for times belonging to at least D6-1).

(ii) is not a limit process expansion in the sense that it cannot

be constructed by the repeated application of one limit process,

even if y were given explicitly.

(iii) trivially contains the initially valid expansion of y in the

sense that this expansion would be recovered from (II.22) by the

repeated application of the limit process (II.8).

Actually, all the above statements apply equally well to the

"composite expansion" in the theory of Kaplun and Lagerstrom

in [12], with the remark that in the present context, the initially

valid expansion is not as important or interesting as its counterpart,

the inner expansion of a problem in singular perturbations.

The following assumption, which is basic to the expansion pro-

cedure proposed, is plausible in light of the preceding discussion
on the roles of the two variables t + and t and nature of the functions

they each depict.

We assume that the solution of the initial value problem (II.1)

possesses a development of the form

N

(II.23) y = F(t+,_) = __, F(n)(t+,_') n+ 0(N+I)
n=O

which is unique (cf. discussion below and in connection with the

evaluation of "'2) and can be determined from (II.1) by treating

t + and t'formally as being distinct variables and requiring (II.23)

to satisfy the conditions demonstrated for (II.22).

The uniqueness of (II.23) is in the asymptotic sense, i.e., to

any order N, F, when regarded as a function of t and _, is unique

up to terms of order N. Furthermore, since the labelling of various

groupings of t and c is intrinsically arbitrary in the final form of

F, uniqueness implies that the uniformity of F to any other N is

preserved independently of any rearrangement of terms that may

be necessitated by such a relabelling. Consider, for example, a linear
function of t occurring in F (n) for some n. Such a function must

be excluded because, if t were relabelled as _t+, the function in

question would exactly become classifiable as a term of F ("+1_, thereby

destroying the uniformity of F to 06 _+1) in D(_-I).

No attempt will be made in setting down conditions on f in

(II.1) under which the assumed structure of the solution is valid.
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The purpose of this work is to discuss the purely formal expansion

procedure one is led to under these assumptions and to illustrate
the various ideas by means of examples.

We now introduce the notation

OF (") OF (")
(II.24a) F_") =- F2(") = --_

Ot+ ' Ot '

02F(-) 02F (") O2F(-)
= _ F_ )(II.24b) F_ ) O(t+)2, F_ ) F(27) Ot+O_, = --_-2 ,

and henceforth regard t + and t as being distinct independent vari-

ables. Thus, the typical terms of (II.1) will have the following

expansions:

n

(II.25a) y = F_°)q - _'_ _")q- q-
nffil h=l

+' ]1,_ _ L-_(n--h+ 1) n+ z 2_, _k-12 + F(_) + O(_N+I),
h=0

(II.25c) _o = 1,

/(y,y) = f(o) q_ el(l) q_ 0(2)

(II.25d) = [(F (°),F_°)) q- c [F(1)fy(E (°),F_°))

q- (F_ 1)q- F(2°) q- oaF_°))fy(F (°_,F_°)) ] + 0(_2).

Although there is no concise form for the general term in (II.25d),

one can compute this routinely by expanding [ in its Taylor series

in the neighborhood of F (°) and F_°).

Substitution of the expansions (II.25) into (II.1) leads to the

following set of partial differential equations governing the first

three terms in the expansion for F

(II.26a) F_°_+ F (°) = 0,

(II.26b) _(l) F(1) o_(o) , _(o) _ [(o),_'11 "q- _ -- _12 -- z5601±'11

2_ _(0) L_(O)-n_P(2)_{_F(2)=- ,_-12o_p(1)_ (2w2-{-wl]/'11-- _'22

(II.26c)
]7(0)_ _ /(1)
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Since (II.23) is the composite expansion of y it must contain

h and hence satisfy the initial conditions (II.lb) and (II.lc). These

imply that

(II.27a) F(°)(0, 0) = a; F(_)(0, 0) = 0, n _ 0;

F}°)(0, 0) = b;
(II.27b)

F_')(0,0) = - (F2(_-1)(0,0)+ k___lo_,F_'-'}(0,0))

The general solution of (II.26a) is

(II.28) F(°}(t +, 0 = A(°}(/) sin t + + B(°)(_ cos t+

where A (°) and B (°) are as yet undefined functions of t.

In order to compute F (l) we replace /(o)= f(F(O),F_O))
Fourier series

, n¢0.

by its

A__o
(II.29) [(0_ = + _ (A.cos nt + + B.sin nt +)

2 n_l

where according to the definition of the An and B,

(II.30a) A,(A (°), B (°_)

1 fo 2"= - /(A(%in t + + B(°)cos t +, A (°}cos t + - B(°_sin t +) cos nt+dt +,
71"

(II.30b) Bn(A _°_,B _°_)

1 fo 2"= _ f(A(°)sint + + B(°)cost+,A(°)cost+ _ B(O)sint+)sinnt+dt +.

These depend explicitly only on A (°) and B (°_.

If we now use the expression for F (°_ given in (II.28) to compute

F(O_ and substitute this result together with (II.29) into the right-12

hand side of (II.26b) we obtain

F(l) V dA (°) 11 + = - L 2 _-_ 2_1B(°) + AI(A(°), B(°)) cost +

(II.31) + 2--_- + 2_o_A _°) - BI(AC°),B _°_) sint +

Ao _ (A_osnt+ + Bnsinnt+).
2

n=2
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The requirement that (II.23) be the uniformly valid development

of a bounded function over the domain D(_ -1) forbids the oc-

currence of terms which grow any faster than _n+lt for example,

in each of the F (n). Therefore, the first two bracketed terms on the

right-hand side of (II.31) must vanish identically because they

contribute to the solution the mixed-secular terms proportional

to t+sint + and t+cost + in the domain DG-1).

This condition provides the following system of ordinary dif-

ferential equations for A (°) and B(°):

dA (o) w_B (°_ 1 B(O))
(II.32a) d}" + _ AI(A C°_, = 0,

dB _°_ 1 B(O))
d}" + _lA(°) - 2 BI(A(°)' = 0,(II.32b)

with initial conditions

(II.33a)

(II.33b)

A(°)(0) = b,

B(°_(0) = a,

which follows from (II.27) and (II.28).

The solution of (II.32) will define A (°_, and B (°) in terms of t,

the initial parameters a and b and the constant _, which so far

appears to be arbitrary.

The role of _1 in equations (II.32) for A (°) and B (°) needs some

further comments. Let us introduce the orthogonal transformation

(II.34a) AC°'(5 --- X'°)(Scos_l?+ B(°)(5 sin_lt,

(II.34b) B(°)(5 = -- A-(°)(_sinwlt"Ji- B(°)(_coso_l_

which corresponds to a rotation of the A (°), B (°) axes (or equivalently,

the phase angle of the oscillations described by F (°)) at a uniform

rate of _ with respect to t. By virtue of the structure of AI(A (°_,B (°))

and B_(A (°_,B (°_) as given in (II.30) we can immediately verify that

_(o) and ]_(0) satisfy the following reduced equations which are

free of _1

dA (°_ I Al(_-(o), _(o)),
(II.35a) d_" --- -

dB _°_ 1

(II.35b) d/" = 2 B_(A_°_'_°))"
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Thus, A-(°) and _(0) depend on t" and the initial conditions, but

not on _1. Upon substitution of the expressions in (II.34) into (II.28)

for F (°) we find that this quantity is also free of 031 if one rewrites

t+ and t in terms of t. In fact, F (°) becomes

F (°) = A-(°)(et; a, b) sin [(1 + _o31-_ 62602 -_- 0(_ 3) ) t - e031t]
(II.36)

+ B(°)(et; a, b)cos [(1 + _wl + e2_2 + 0(e3))t - ec01t]

in which the cancellation of o_1 in the arguments is exhibited. Thus,

in (II.19) we need not have included _1 and shall henceforth set

¢1 = 0 for simplicity.

This result could have been anticipated directly by noting that

any given trigonometric function of t÷ (which also includes e_01

in its definition) can always be split into products of terms with

arguments _lt and [1 + _2032+ 0(_ 3)]t respectively. The latter

should then be regarded as functions of a new t + while the terms

depending on _wlt should be treated as slowly varying functions
of t to be consistent.

Thus, the cancellation of 031 in the explicit representation for

F (°_ of (II.36) is a reflection of the fact that no unique allocation

exists for a trigonometric term with an argument proportional to

ct. Since there exists no intrinsic criterion for the evaluation of

_1, such as through boundedness or uniformity considerations, we

shall henceforth take _1 = 0 for the sake of simplicity. Thus, _-(o_

= A(0_, _(o) = B(0_ and the solution of these functions can be com-

puted from (II.35).

Returning now to the solution of F (1), one finds the following

result after eliminating the first harmonics from the right-hand

side of (II.31):

F(1)(t+,-[) = A(l_(_sint+ + B(1)(_cost + A0
2

(II.37)

_2 + B"sinnt+ ]"
1

+ = n2-_l [A.cos.t÷

Again A (1_,and B (' are unknown functions of t-to be determined

by conditions on F ¢2). We note from (II.37) and (II.27) that A _1_

and B _1_satisfy the following initial conditions

(II.38a) A(1)(0 ) _ n B1
= n=2 1 -- n2 Bn(b, a) - -_ (b, a),
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(II.38b) B(1)(O ) _ Ao(b, a) _-, A,(b, a)2 +'--
n=2

In order to compute F C2)we replace f(_) by its Fourier series

(II.39) f(1)= Co +
2 + _ (Cnc°snt+ + D, sinnt+ ).

n=l

For a given function f(y,y), the coefficientsC_ and D_ are explicit

functions of A (°),B (°),A (I)and B (')and can be calculated routinely

using the definitionfor f(i)(cf.(II.25d))and the usual formulas for

the coefficientsof a Fourier series (cf. (II.30)).Moreover, since

A (°)and B (°_have been determined from the solution of (II.35),

the C_ and D, can be reduced to known functions of A (1), B (_), t

and the initial parameters a, b. There is very little to be gained

in attempting to develop elaborate formulas for the Cn and D,

since for most practical calculations (e.g., when f is a polynomial

in its arguments) the various Fourier series, and products thereof

reduce to finite combinations of trigonometric functions which can

be readily calculated.

After substituting for the various terms appearing on the right-

hand side of (II.26), we obtain the following result

F(2) F(2) [- dA (1) 1 dB, 11, + = -- L2_ nt 2 dr" 2_2B(°)-4- C1 cost +

F dB (1) 1 dA, ]
+ L + 2_sA (°)- DIj sint+ - C°2

(II.40)

+2{/_=2 F2ndA"/dt'n2_l D_lsinnt+

_i- _- cosnt + .

Clearly, the boundedness of F (2) for large t+ requires that A (_)

and B (1) satisfy the following equations

dA (1) 1 dB1
(II.41a) 2--d_ + 2 di" 2°°2B(°) + CI = 0,

dB (_) 1
(II.41b) 2--_- -4- _ _ + 2¢o2A(°) - D1 = 0.
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The solution of equations (II.41) subject to the initial conditions

(II.38) will define A (1) and B (1) in terms of t, the initial parameters

a, b and the unspecified constant _.

Unlike _1, _2 cannot be regarded as arbitrary, in the sense that

a trigonometric function with the argument e2o_2t cannot be uni-

formly represented in terms of t for t in D(e-_). Moreover, the

determination of the o_n for n > 2 cannot hinge on the requirement

that the development (II.23) be bounded for t in D(_ -_) since this is

automatically satisfied once the mixed secular terms are eliminated.

We recall that one of the underlying assumptions on which the

development (II.23) is based involves the independence of the

uniformity of the expansion upon the rearrangement of terms

due to a change in the labelling of functions of t and _. We shall

show in the examples to be discussed in §III that this condition

will be sufficient to determine _2. Although no explicit calculations

will be given, the extension of the present expansion procedure

to higher orders can be carried out routinely. One requires the

mixed-secular terms with respect to t + to vanish to each order

n. This provides ordinary differential equations which together
with the initial conditions define the A (n-l) and B (n-_> in terms of

t, the initial parameters a, b and _n. One then determines _n by

the above-mentioned condition upon the uniformity of the ex-

pansion.

III. Bounded oscillations. Examples.

a. Linear Damping. [ = 2:y. We now resume discussion of the

simple example which was considered in §IIb in order to show the

failure of the initially valid expansion for large times.

With f(0> = 2F_O_, and [(_ = 2(F_ 1) -{- F2(°)), the various definitions

(or some simple direct calculations) give the following values of

the Fourier coefficients:

(III.la) AI = 2A(°); B_ = - 2B¢°); An = Bn -- 0, n _ 1;

CI = 2(A (I)- B(°>);

(III.ib) D, = - 2(B (x)q-A(°));

C,= D,= O, n _ l.

The solution of (II.35), with b = 0 is then
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(III.2a) A(°){_ = 0,

(III.2b) B(°)(0 = he-'.

a result which is immediately confirmed by the effect of damping

on a linear system (cf. (II.14)). To O(1) the solution is given by

(II.28) with t + -- [1 -f 0G2)]t and A(°)(_ and B(°)(0 as defined above

in (III.2).

We can evaluate A (1) and B (') by solving (II.41) with the results

of (III.1) and (III.2) and subject to the initial conditions (II.38)

which now become A('}(0)= a, BCl)(0)= 0. This gives

(,II.3a) A'l'(_=a[t'(_2-{ -1) -{-1] e-',

(III.3b) B('_(tj--0.

Consider the term proportional to re-Tin (III.3).Since one may

relabelte-tas _te-',this term when multiplied by sint+ (cf.defini-

tion of F (I)in (II.37))would be relegated to F (2)where it would

violateuniformity in D(e-l). We have assumed that the expansion

to any order cn isuniquely defined by the governing equations to

order n+l In fact,F (2)isalso determined at this stage, except for

A (2)arlctB(2),and the term in question must be excluded by setting

w2 = - 1/2. The asymptotic representation of the solution is now

determined to 0(_) in the form

E 2 l- E

y--ae-tcos 1-_ +O(c 3) t

(III.4) 2

+cae-'sin 1--_ +0G 3) t+0(_ 2)

which is uniformly valid for t in DG -1) (4).

b. Damping Proportional to the Cube of the Speed [= y3. The

physical context of this example, where the two time scales as

well as c were calculated in terms of the dimensional constants

of the problem, was introduced in §IIa. We note that here [lo) = F_O)S,

which can be used in (II.30) to derive the following values of the

(4) Actually, since for this simple example the exponential decay of the solution
if exactly represented by the two-variable expansion, uniformity of the expansion
is assured for all times.
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Fourier coefficients that are needed for the first order solution

3 A(O)(A(O_2 B(O)2) A (°) (A(O)2 _ 3B(O)2);
(III.5a) A, = _ + ; A3 = -_-

(III.5b) An--0, n_1,3;

B (°_ (B(O)2 _ 3A(O)2) ;
3 B(0)(A(O)2+ B(0_2); Ba -_-(III.5c) B, = - _ =

(III.5d) Bn=0, n_l,3.

The solution of equations (II.35) with the initial conditions (II.33)
for A (°) and B (°) is:

(III.6a) A(°)(_ --0,

(III.6b) B(°)(/j = 2(3/`+ 4)-1/2.

Therefore the solution to 0(1) is

(III.7) y = 2(3/'+ 4)-1/2cos(1 + O(_2))t.

According to (II.37) and (III.6) we have:

B(O)3

(III.8) F (1) = A(1)(_ sin t + -4- B(1)(_ cos t + -4- -_- sin 3t +.

Rather than computing the Cn and Dn according to the general

form of f(1)= _(o)21_(_)_-i x-1 + F2(°)),use of (III.6),(III.7)and (III.8)

in computing the actual value of [(I)leads to considerable simpli-

fication(_).We also note that sincewe are not interestedin carrying

out the explicitsolution of F (2),we need only compute CI and DI

inorder to evaluate A (I)and B (')(cf.(II.40)and (II.41)).A straight-

forward calculationgives

3 B(O)2(A(,) 15 B(0)3)(III.9a) C1 = _ - _ ,

9B(O)2
(III.9b) D, - B (1;,

4

in which case Equations (II.41) become

(5) This is why no effort was made in deriving explicit formulae for the Cn and
Dn for a general [(n in §IId.
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dA (1_ 3 B(O_2A(1) 9 B(O_5- 2_2B(O_ 0,
(III.10a) 2--_ -4-_ + 1-_ =

dB (1) 9 B(0)2B(1) 0.
(III.10b) 2_ + _ =

The initial values to be satisfied by A C1_and B (11are according
to (II.38)

9
(III.11a) A(I_(0) -

32'

(III.11b) B(I_(0) = 0.

The solution of the system (III.10) subject to {III.11) is

(III.12a) A'I'(_ = (3t+ 4)-1/2[ 3 15]g (3t_-4)-1+ 2o_2t+_-_ ,

(III.12b) B(1)(D= 0.

Again, uniqueness and itsimplicationsrequirethe exclusionof

the term proportionalto o_2in (III.12a)and we set _2= 0. Thus,

the solutioncorrectto O(e) is

y = 2 (3t'fl- 4)-1/2cos [1 d- OG 3) ]t

3_- 4)-i/2I F3 (3t+ 4)-I+ _Isi n [i-4-0(_3)]t+e(

(III.13)
_.L_o

+ _ (3/+ 4)-lsin3 [1 + O(_a)]t + O(J).

c. Linear Damping and Nonlinear Restoring Force. In this case

we set [ = y- cy a, where c is an arbitrary constant independent

of e. The first two terms of the expansion of the perturbing func-
tion are

(III.14a) [(o_= F_O__ cF(O_3,

(III.14b) f(1) = (F_,_-4- F(2°_) - 3cF(°_2F(_,

and (III.14a) leads to the following values of the Fourier coefficients

(III.15a) A, = A _°_ 3cB(°_ cB(°_
- _ (A(°_2+ B_°_2);Az = _ (3A (°12-B(°_2);
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(III.15b)

(III.15c)

A,=0, n_l,3;

B1 = - B (°)
3cA (o)

(A (°)2 4- B(°)2);

cA (°)(A(O)2_ 3B(°)_);
B3 =

J. KEVORKIAN

(III.15d) B, = 0, n _ 1,3.

Use of the amplitude and phase defined by

(III.16a) A (°) = p sin 8,

(III.16b) B (°) = pcos0,

simplifies Equations (II.35) considerably and one can directly com-

pute the following solution(e) for the case a = 1, b = 0:

(III.17a) p = e -/_2,

3c
(III.17b) 0 = -_- (I -- e-_).

We note that to order unity the cubic term in the restoring

force does not affect the amplitude (cf. (III.16a) and (III.2b)) but

introduces a phase shift which tends to the constant value 3c/8.
The calculation of the coefficients C1 and D1 is straightforward,

although somewhat tedious, for this example and will not be dis-

cussed.

d. Rayleigh's Equation (van der Pol's Equation). As a final ex-

ample consider Rayleigh's Equation for which [ = - y + (ya/3).

The transformation w = y in (II.1) for the above [ leads, after

differentiation, to

(III.18) u) - e (1 -- w 2) W + w = 0

which is van der Pol's equation, although some authors (e.g.

Stoker in [23]) denote the former equation as van der Pol's.

There is no relative merit for one form or the other for the present

class of problems and we shall use the formulation in terms of y.

One then calculates the following Fourier coefficients of [(0)

= - F_°) 4- (1/3) F_°)3:

(6) An error in this solution, which appeared in [13] and [14], was pointed out
by J. A. Morrison.
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A _°_(A(O)2 B_O)2
(III.19a) AI= _ -t- -- 4),

(III.19b)

(III.19c)

(III.19d)
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5B_O_5 B(o)3 B¢O)
A(1) (B (°)2 - 4) -- -- +

(III.24a) C1- _ 128 4 2 '

(III.24b)

Use of Equations (III.20) simplifies the value of A1 and B1 and
one obtains

B(I)

D1 ---- _ (4 -- 3B_°)2).

A, = 0, n _ 1, 3,

B_°_ (A _°)2-[- B _°)2 4),
B1 = - -_-

B _°)(B¢O_2- 3A(O_2),
(III.19e) Bs = -_-

(III.19f) 13, = O, n _ 1, 3.

The solution of (II.35) with b = 0 is then easily computed to be

(m.2Oa) A_°_(/_= o,

(III.20b) B(°)(0 -- 2a [a 2 -_- (4 - a2)e-[] :-1/2.

We note if a = 2 then F_°)which is defined as

(Ili.21) F _°)= 2a[a2 + (4- a2)e-_]-l/2cost+

reduces to the correct periodic solution, namely 2 cos t +. It is also
noted that this periodic solution is stable in the strong sense that

for any value of a, the solution tends to the limit cycle as t--, _o.

According to (11.37) /_l) is given by

B(O)3

(III.22) Fa_ = A_U(0sint + + Ba_(0cost + -t--9-_-sin3t+.

In this case

(III.23) f(1) = __ (F_I) _}_ F_O))q_ F_o)2(F_I_+ F2_O))

and one can derive the following values of C1 and D1 from the
available information



230

(III.25a)

1 dB1

2 d_"
1 d [B(O_(B(O)2_ 4) ]
8 di "_ "-

B(°l (4- B (°)2)(4 - 3B(°)2),
64
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1 dA1
(III.25b) 2 d_ - 0.

Equations (II.41) then become

(III.26a) 2 dA(_) A(1) (B (°)2- 4) Jr B(°)5 B(°)
dt" + 4- 128 4

dB (_) B(1) + 3 B(0)2B(_) _- 0.
(III.26b) 2 d_-- -

2w2B(°) _-- 0,

The initial conditions computed from (II.38) reduce to

a(3a 2- 16)
(III.27a) A(1)(0) = 32 '

(III.27b) B(_)(0) -- 0.

The solution of (III.26) subject to (III.27) gives

(III.28a)

B(°) (__) B(°) (B(°)2A(1)(D = _- log + -_- + 5a 2 -

1

B(1)(/) = 0.

32)

(III.28b)

It is clear that we must set w2 = - 1/16 in order to avoid an

inconsistent term in F (2), and this requirement defines F (1) com-

pletely. We note again that (since for a = 2,B(°)(/) = 2) this case

contains the periodic solution, and that as t-_ _o for arbitrary a,

the solution approaches the limit cycle.

IV. Miscellaneous general examples. In this section we will

apply the method developed for solving the initial value problem

(II.1) to a variety of examples in which the perturbation function

[ will be allowed to depend also on t and e.

For the sake of simplicity, the general discussion of §IId will
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not be paralleled here for the case where f= f(y,y,t,_). In fact,

in this case it is not possible to choose a slow variable a priori.

Moreover, a particular set of dependent and independent variables

which may arise naturally from the physical context of the problem,

may not be suitable for the uniform development of the solution.

Each of the examples presented in this chapter will illustrate

one aspect of the preliminary analysis that is required before the

formalism of the previous sections can be applied.

a. Oscillator with a Slowly Varying Frequency. Consider the initial

value problem

(IV.la) Y-k 2(_y=0, u_0, _<<1,

(IV.lb) y(0) -- a,

(IV.lc) y(0) = b.

The slowly varying function u depends on t'-- et and has various

interpretations depending upon the physical context of (IV.l).

In order to study (IV.l) with the help of the procedure developed

in previous sections, introduce the transformation

dt +
(IV.2) - uGt)

dt

in terms of which (IV.l) becomes

d2Y + _g(5 dy
d(t+)2 _ + y = O,

y(0) = a,

(IV.3a)

(IV.3h)

(IV.3c)

where

d_+] t+ =o

b

 i-0) '

-2dtt
(IV.3d) g(0 = u d-t-"

Equation (IV.2) is a generalization of (II.19) for the case of a

variable frequency. Note that here t + is not a linear function of

t. In fact, except when u is constant, this function is not the "fre-

quency" of the problem, as evidenced from (IV.3a).
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We assume y has the following expansion in two variables

N

(IV.4) y = _ F(n)(t +, _ _n + O(_N+I).
n=O

The equations governing F (°) and F (1_ are:

(IV.5a) _(0) F(O)• 11 + =0,

(IV.5b) -11r(1)+ F(1) = _ g(_ F_O)

If the solution of (IV.5a)

F(O)
12

2--
#

(IV.6) F <°_= A(°_(_ sin t + + B_°)(0 cos t +

is used to compute the right-hand side of (IV.5b), we obtain

F_ )+ F _I)

(IV.7) = - I gA(°' +2 dA(°' 7 I 2 dB(°)7y_]sint + + gB (°) +-Y_] cost +.
#

Clearly, both bracketed terms in (IV.7) must vanish if F (1) is

to be bounded for t + in D(t-1).

The solution of the resulting two differential equations is:

(IV.8a) A(O_(_ = A,o)(o) (.(0) 1lj2,

(IV.8b) B(O)(_= B(O_(0) (_(0) _1/2
\T/ "

The initial conditions imply that A(°_(0) = b/_(O), B_°)(0) = a, hence

F _°_is given by

(IV.9) F(0) (.(0)_1;2 (acost + b sint+)= \ /

This example is most elegantly solved by the technique developed

by Gardner in [ll], which applies to a large class of Hamiltonian

systems possessing adiabatic invariants. The first-order result of

(IV.9) confirms, for example, the adiabatic invariance of E/_ to

0(1), where E is the nonconstant energy defined by

(IV.10) 2E = y2 + 2y2.
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b. Beating Oscillations. Consider the following linear mechanical

system

d2_-
(IV.11a) m-_-_ + k_-= Focosa_

dy] = 0(IV.11b) _-(0) = _ i-o

where m, k, Fo and a are constants.

We wish to study the solution of (IV.11) for the case where a

is close to the natural frequency of the system (k/m) 1/2.

Clearly the appropriate nondimensional variables are:

Y i-= t (k/rn) 1/2- a
(IV.12) Y = (Fo/k)' (m/k)l/2, c = (k/m)l/2 <<1.

The dimensionless form of the initial value problem (IV.11) is

(IV.13a) y + y = cos(1 - _)t = cos(t - t'),

(IV.13b) y(0) = y(0) = 0.

We can of course compute the following exact solution of the

above system:

1

(IV.14) Y -- _(2 - c) [(cos_t - 1)cost + sintsin_t].

We note that lim,_oy(t,c)= (t/2)sint, namely resonant oscil-
lations.

However, for any positive value of E, the motion is bounded and

represents a long period oscillation modulating a short period os-
cillation.

We should note that, since for t in D(E-1), y = 0(1/_), the correct

expansion for y must have the form:

N

(IV.15) y = _ F¢")(t,D_" + O(_N+I).

The reader can verify that a routine application of the two vari-

able formalism leads to the correct development of (IV.14) for t
in D(CI).

The only essentialdifferencebetween thisand the previousex-
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amples was the fact that _y rather than y possessed the usual two

variable expansion.

c. Mathieu's Equation. The dimensionless form of Mathieu's Equa-

tion is (cf. [23]):

(IV.16) :_+ (6 -}- t cost) y = 0.

In [23], Stoker also discusses the stability of the solution of

(IV.16) in the 6, t plane. He shows that corresponding to transi-

tional values of _ and _ from stability to instability, (IV.16)

possesses a periodic solution with period 27r or 4z, and that the

solution of (IV.16) with general initial values is unstable(7) for

the transitional values of _ and _.

Thus, by finding all the functions _(_) for which (IV.16) admits

a periodic solution one can define the boundaries of the regions

of stability and instability in the 6, t plane.

It is especially easy to compute the periodic solutions and their

corresponding transitional curves 5(f) if _ is small, by the method

of Lindstedt. To summarize the results given in [23] and [19], we

note the following.

The transitional curves intersect the e = 0 axis at the critical

points 5c = n2/4, n = 0, 1, 2,.... Through all these points pass two

transitional curves _(_) and (n)_, except at the origin which admits

only one such curve (0)5. The region to the left of the curve (0)5

corresponds to unstable solutions, and as each of the transitional

curves are crossed by increasing 6, the stability of the solution of

(IV.16) reverses.

The asymptotic representation of the first four 5 (n) and (")6 correct

to 0(_ 4) is given below(S):

2

(IV.17a) (0)6 = e 7
-_ +5_ 4,

(IV.17b) _(1_= 1 _ c2 3 1 4
-_ 2 8 32 768 ' '

(IV.17c) (1)5 1 _ 2 3 1 4
4 2 8 32 768

(7) By stability we shall mean boundedness for all nonnegative values of t.
(s) For the expansion of all the 6tn) and (n)6 correct to 0(_6}, the reader is

referred to p. 17 of [19].
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2

(IV.17d) 6(2)= 1 - --_ 5 4
12 +--_ '6,912

(IV.17e) (2)5= 1 +5 2 763 46,912 E ,

9 2 3 13 4
(IV.17f) _(a)= 4 + f-6 + 3-2 + _ _,

9 J 3

(3)5= 4 + 1-6 32(IV.17g)

In this section we will investigate

of (IV.16) in neighborhoods of the
from the first three critical points _c
will solve Mathieu's equation with

N

235

13 4
+ lO-Ng4g_ •

the behavior of the solutions

transitional curves emanating
= O, 1/4, 1. More precisely we

1
(IV.18) _ = _c+ _ _,_" + O(_U+_), _ = O, 4' 1

n=l

where the 5, are arbitrary numbers. For each 5c, (IV.18) describes

an N parameter family of curves in the (6,c) plane which pass

through 5_.

We make the following additional assumption regarding the
structure of the solutions of (IV.16). For each _, there exists a

unique function _6((), depending upon 5c and with the property

_5(_) = o(1) as _--_0, such that when 5 is in an unstable region

this instability is depicted only by the unboundedness of the solu-

tion with respect to n,t and not t.

Let us adopt the initial conditions

(IV.19a) y(0) = b,

(IV.19b) y(0) = a,

and in the first instance study the solutions of (IV.16) in the

neighborhood of the origin of the 5, e plane.

For this purpose we set (el. (IV.18))

(IV.20) _ = _1 + _2_2+ O(_a).

We will show by actually carrying out the expansion, that in

this ease n,(c) = e. We expand y in terms of t and t = ct thus:

1 u
(IV.Z1) y = - Y'_ F(")(t, _ _" + O(_U).

n=0
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The leading term in this expansion is of order c -1 in order to

accommodate the nonzero initial condition y(0) = a.

The equations and the initial conditions obtained by substituting

the expansions (IV.21) and (IV.20) into (IV.16) and (IV.19) are:

(IV.22a) F_ °> = 0,

(IV.22b) F_ _ = - 2F_ °>- ($_ -4- cos t) F _°_,

(IV.22c) _2) or,_l_ (_1 + cos t) F _ _2F _°) F _°__'11 _ -- _'12 -- -- -- 22_

F_7)= -- 2F_ -_ - (_ + cost)F _"--'_ - F_ -2)

(IV.22d) _.- 5kF _"-k_, n>=2,
k-2

(IV.23a) F_(0,0) = b, F_"J(0,0) = 0, n _ 1,

F_I)(0,0) = a - F_°)(0,0),
(IV.23b)

F_")(0,0) = - F_"-I)(0,0), n _ 1.

We note that the homogeneous solutions of all the F _} are

(IV.24) F{")(t, _ = A {n}(_ t -4- B{n)(o.

In view of our assumption regarding the boundedness of the

F {_}for large t we must set all the A{_(0 = 0.

The solution for F {°_ is therefore

(IV.25) F {°}= B_°}(_.

The initial condition (IV.23a) for F _°} requires that

(IV.26) B_°}(0) = 0.

If we use the fact that F {°_ is a function of t only in (IV.22b)

we obtain

(IV.27) F_ _ = - _B_°}(0 - B_°_(0 cos t.

Again, in order that F _1) be a bounded function of t, 5_ must

vanish, and this produces the correct stability criterion in the

neighborhood of the origin. For, to O(t), the transitional curve

is indeed $ = 0.

If we now solve for F _ we obtain

(IV.28) F _)= B_)(_ + B_°_(_ cos t.
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The initial conditions for F (_) imply that

dB(°) ](IV.29) B (1)(0) b, d}" _-o

If we now use the preceeding expressions for F (°) and F (1) to

evaluate the right-hand side of (IV.22c) we obtain

2--_-dB(°) L-.[-d2B(°) (1) ]_f2q- __421)= sint-- [_-}- B (°)

(IV.30)

- B(1)(_ cos t - B(°)
• _ cos2t.

The bracketed term on the right-hand side of (IV.30) is a func-

tion of t only, and hence must vanish in order that F (z) be bounded

as t_ _.

The solution of the equation obtained by setting this bracketed

term equal to zero is:

/ 1 V 1/2 / 1 \1i2 1

(IV.31a) B(°)=a t,2-}-_) sin t82+_) t, ,i> -- 2'

( 1).1/2 ( 1 )1 1�lit. 52 < -- -.(IV.31b) B (°)--a -62- sinh -62-_ 2

Thus we have established the correct stability criterion for 62,

and if we proceed with the higher order terms we will successively

be able to compute more accurate expressions for the transitional

curve and the solution on either side of this curve.

Let us now return to the question of the choice of _,(E). If we

had chosen an _, _ _, either one of the following two eventualities

would have arisen:

a. For _ = o (_5) as c--_ 0, it would have been impossible to make

y a bounded function of _,t for values of 5, consistent with the transi-

tional curve. This can be seen easily if we consider a typical term

in the expansion such as sin(_2 T (1/2))I12t = sin(_2+ (1/2))I12_t. If,

for example, we have chosen _,(c)= e 1/2 (i.e., t = c1/2t) the term

in question would have appeared in the solution in terms of its

nonuniform expansion in powers of _1/2. This would have led to

a term proportional to c1/2(_2-}- (1/2))1/2t" in the solution, and to

the erroneous conclusion that 62 --- - 1/2 was the only possible value

for stability.
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b. For _(_) = o(_) as c--_O, it would have been impossible to

make y a bounded function of t for the following reason. If the

two variables we are expanding in are t and, say t = _2t, the above

term would appear in the solution in terms of its nonuniform ex-

pansion in powers of _t thus (62+ (1/2) )l/2_t -k ....

We conclude from the above that if we restrict ourselves to those

solutions which lie on the family of curves to which the transitional

curve belongs, (i.e., the m-parameter family with m < N, obtained

by varying the nonzero coefficients 61, -.., 6N appearing in the transi-

tional curve), then we have a unique way of determining the second

time variable in our expansion.

In the preceeding example, and in what follows the choice of

t'was verified by actually carrying out the expansions for two other

_'s in adjacent order classes. In all cases the results were as out-

lined above.

Next, let us consider the family of solutions in the neighborhood

of 6c = 1/4. Here again the appropriate function ,l_(e) is e, hence

t'= _t. We expand y in terms of t and tin the form

N

(IV.a1) y = _ F(')(t, D _" + 0(_+_).
n=0

The equations and initial conditions governing F (°_ and F (1) are

then easily calculated

F(O)
(IV.32a) _(o) 0,

_-'11 "_- _- =

F(1)
(IV.32b) ]_'(1) O ]_(0) 6_F(0)-_1 + - _ 12 - - F(°)cost,

4

(IV.33a) F(°)(0, 0) = b, F(1)(0, 0) = 0,

(IV.33b) F_°)(0, 0) = a, F_)(0, 0) = - F2(°)(0, 0).

The solution of (IV.32a) for F (°) gives

(IV.34) F (°)= A(°)(_sin 2 + B(°)(Dcos 2.

The initial conditions imply that

(IV.35) B(°)(0) = b, A(°)(0) = 2a.
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When this expression for F (°) is substituted into (IV.32b), we

obtain

Fill) ÷ 4- = L-_- + - 5, A (°) sin 2

1 t
VdA(°) (_lJl_ -_(IV.36) -L--_ 4- ) B(°)] cos_

A (°) . 3 B (°) 3

2 sm_ t- -2-- cos_ t.

Thus, the boundedness of F (1) requires that A (°) and B (°) satisfy

the equations

dA(°) -- (_1+1(IV.37a) dt 2 ) B(°_'

dB(°) _ (_1_1) A(O)"(IV.37b) di"

The solution of (IV.37) falls into two categories. First if 51 > 1/2

or 51 < - 1/2 the solutions are stable, and we have

(2514-1 sin 5[-1 /2 4_2acos 512-
(IV.38a) A (°)= _b \2_1-- 1 4 4) t,

1 ) t 4- 2a - sin --(IV.38b) B (°'= bcos (_- _ \2_1_ _) t,

where the upper or lower signs are to be taken depending on

whether 61 > 1/2 or 51 < - 1/2 respectively.

Conversely, if - 1/2 < 51 < 1/2, the solutions are unstable, and

we have

kl ~
(IV.39a) A (°)= - b-_2sinh(klk2t) 4-2acosh(klk2t),

B (°) b cosh (klk2_ k2 -
= - 2a-_1 sinh(klk2t),

(IV.39b)

where
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When 51 = - 1/2 we have

(IV.40a) A¢°_= 2a, B _°_= b- 2a_,

and for 51 = 1/2 we obtain

(IV.40b) A _°_= 2a - b_, B t°_ = b.

Thus, the choice of _= et has led to the correct stability require-

ments (and this choice is unique). Furthermore, it can be verified

that the expression we have derived for F _°_possesses the appropriate

properties on, and in the neighborhoods of the two transitional

curves through 5c = 1/4.

By carrying out the next step in the expansion we will obtain
the more accurate criteria for 5_1_and c1_5as well as the next term

in the expansion for y.

The analysis for the third critical point, 5c = 1, is quite similar

to the preceding with theexception that here we must set _(_) = 2

and we use the notation t = _2t. We will not carry out the details

here, but will simply present the final results for F _°J.

We have for 5 = 1 -4- t51 + t252 -4- 0(53)

N

(IV.41) y = _ F_n_(t, t ) c_ + o(_N+I),
n=0

(IV.42 a) F _°_= A _0_(_'_) sin t -4- B co_(t_) cos t,

(IV.42b) A_°_(0) = a,

(IV.42c) B(°_(0) = b.

Boundedness with respect to t requires that 51 = 0, and the

conditions defining A _°) and B _°_are provided by the boundedness

of F _2_.The solutions are stable if 52 > 5/12 or 52 < - 1/12 and

N1/2 1/2

\1252 -4- 1 2
(IV.43a)

11/2 t
+acos[ (52 -5) (52+1)_] _-,

0
(IV.43b)

_/1252-Ji-1; Sln I (52- _-2_)(52-_-1) I _,± a \12_2 -- 5
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where the upper or lower signs are to be taken depending on

whether 52 >5/12 or 52 < - 1/12 respectively.

The solutions are unstable if -1/12 <_2 < 5/12 and

kl t t
(IV.44a) A (°_= b_--_sinhklk2-_ + acoshklk2-_,

2

(IV.44b)

where

t k2 t
B c°_-- b cosh klk2 _ '}- a sinh klk2

Z

_1/2 _1/2

On the transitional curve _(2) : 1 -F- (5/12)_ 2, A (°_ and B (°) take

on the following values

(IV.45a) A (°)= a, B(0)= at _-b.
4

On (2)5= I - (_2/12) we have

bt
(IV.45b) A (°)= -- + a, B (°)= b.

4

Again, itcan be verifiedthat the expression we have derived for

F (°)possesses the appropriate properties on, and in the neighbor-

hood of the transitionalcurves through the criticalpoint 5c= I.

d. Duffing'sEquation, Modulated Harmonic Oscillations.Consider

the initialvalue problem

(IV.46a) _ __ y + _y3 = _cos(1 -_ a_) t,

(IV.46b) y(0) = a,

(IV.46c) y (0) = b,

where a, a, and b are arbitrary constants. Note that by suitable

normalization of y and t, any forcing function with an amplitude

of order _ and a frequency differing from unity by order _ can be

brought to the above form.

Since the variable (1 + ae) t appears directly in the forcing func-

tion of (IV.46a) we choose t + -- (1% a_)t as our fast variable and

let t'= ct be the second variable.
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Equations (IV.46) then transform to

(IV.47a) (1 + a_) 2 d2y
d(t+)2 + Y + _y_ = _cost +,

(IV.47b) y(0) = a,

dy b
(IV.47c) dT lt+=o - (1 + ae)"

We assume an expansion for y of the form

N

(IV.48) y = _ F(n)(t +, _ _ + 0(_ N+I)
n=0

and derive the following equations for F (°) and F (1_

(IV.49a) F_°J + F _°_= 0,

(IV.49b) F_I+ F I1) = - 2F_ °_ - F(°I_ + 2aFC°l + cost +.

With the solution for F C°Jas follows

(IV.50) F (°_ = A (D cost + + B(/) sint +

where (IV.47) imply

(IV.51) A (0) = a, B(0) = b,

(IV.49b) becomes

F(1) F(1) F dB 3
11 -I- = I -- 2 d--}- -4 A(A 2+B 2)+l+2aAl cost +

I dA 3 B(A2_}_ B2 ) + 2aBl sint +(IV.52) ÷ 2 d-T-

S 2

+ A (3B2 _ A2 ) cos 3t + -_- -_-(B - 3A 2) sin 3t +.

The requirement that F (1) be bounded gives the following two

first order equations for A and B

dA 3B

(IV.53a) dt- - 8 (A2 + B2) - aB,

dB 3A 1

(IV.53b) dr- - 8 (A2 + B2) + 2 + aA.
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It is easy to verify that the system (IV.53) is Hamiltonian with

(IV.54) H = 3 (A 2 -k B2) 2 A2 a2 (A2 -k B 2) -- const.

With this result A and B can be reduced to quadrature and are

found to involve elliptic functions of t. The qualitative behavior

of the integral curves in the (A, B) plane can best be deduced by

considering (IV.53) directly.

We note that the singular points of this system are at B = 0

and A given by the roots of the cubic equation:

(IV.55) 3A 3 - 8aA - 4 = O.

If a < (81/128) lj3 -= acR, (IV.55) has only one positive root which

we denote by Ao. Ifa > acR we have, in addition to Ao which remains

positive, two negative roots A1 < A2 < 0.

The point A = A0, B = 0 is a center for all values of a and, if

a < aCR, the integral curves form a nested set of closed simply

connected curves which tend to large circles (cf. (IV.54)) for large

values of H. The solution is sketched in Figure 1.

B

//

FIGURE 1. Amplitude-Phase Diagram for a -< acR.

Ifa > acR, the point A -- A1, B = 0 is a saddle-point and A = A2,

B = 0 a center, and the integral curves have the qualitative be-

havior illustrated in Figure 2.
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\

FmuRE 2. Amplitude-Phase Diagram for a > acR.

All three singular points correspond to periodic solutions of

(IV.46) and their existence could, of course, have been deduced

by Lindstedt's procedure. Here, in addition, we find the general

behavior of A and B which we note is bounded in all cases. Further-

more, the sketch for the case a > acR in Figure 2 shows that the

periodic solution at (As, 0) is unstable in the sense that any small

deviation from the initial values a = As, b = 0 will lead to a large

departure of the solution from the periodic one. For further dis-

cussion the reader is referred to [25], where Struble has studied

this equation and derived identical results by his method.
Since A(t) and B(D are transcendental functions, the calcula-

tion of the higher order terms becomes tedious and will not be given.

e. Duffing's Equation, Modulated Subharmonic Oscillations(S).

Consider the following generalization of the problem discussed

in §IVd:

(IV.56a) 2 + y + _(y3 ___UY) = COS_(_) t,

(9) The material in this section is taken from class notes prepared by P. A.
Lagerstrom.
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(IV.56b) y(0) = a,

(IV.56c) y(0) - b,

where the frequency 9 is a known function of _ which may be

expanded asymptotically in the form

N

(IV.57) 9(_) = _ _n_n + O(_N+I).
n=0

Thus, in addition to the forcing function of unit amplitude and

arbitrary frequency we have included a linear damping term pro-

portional to _ (where # is a constant independent to _).

There is no loss of generality in restricting _o to nonnegative

values since the solution for a given negative 9 is the same as that
for - 9.

The case o_0= 0 is a special case requiring separate treatment

since here one should use 9t as the slow variable. This case,

which presents no special difficulties, will not be discussed.

The case o_0-- 1 also requires special consideration because the

usual expansion for y would erroneously imply that F (°) is un-

bounded in response to a resonant forcing function (cf. (IV.58a)

and (IV.59a)). The variable _-= -1/2y and the perturbation prob-

lem in which y is regarded fixed as _--, 0 is the only meaningful

one here (cf. §IVb where, for the linear problem, c-ly possessed

a two variable expansion). However, since the nonlinear term

now becomes 0(1) (as it should to prevent resonance) the problem

is not within the scope of the present method.

In fact, we shall concentrate on the case _o = 3, which will be

shown to lead to the fundamentally novel phenomenon of sub-
harmonics.

We expand y in the form

N

(IV.58a) y = _ F_"_(t+,'t)_ + 0(_ N+I)
n_0

where

(IV.58b)

(IV.58c)

t + = 9G)t,

_'= _t +

and compute the following equat'ons for F _°_ and FI_:
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(IV.59a)

(IV.59b)

where

2_,(0) F(0)wo_r,ll + _ cos t +,

000x" 11 -3 t- _ -- -- /_600_t" 12

-- _3F_°l -- FtOl3

_ P-_O.

With the notation

(IV.60a) T = _o_(t + + _),

(IV.60b) _ = (1 - w_)-l,

the solution of (IV.59a) may be written in the form

(IV.61) F (°_= p cos r +4-a cos t +

(IV.62a)

(IV.62b)

After some

where p and ¢ are as yet undefined functions of t.

The initial conditions imply that

p(0) = [wo2b2+ (a- _r)2]1/2_--P0,

_(0) tan_ 1 ( bwo _ (_0 o

\a--a�

manipulation (IV.59b) reduces to

2_(i) F(_) I do wlWO" 11 -_- = 2p -__ + 2p _o

(IV.63)

J.KEVORKIAN

3 3 1-- -- -_ pa2 -- _ p 3 COST

+ [2_od---P+_---plsinT
W0

3 p2acos(2 T _ t+ )
4

3 3
+ (2(rWOWl--_p2a-_aa) cost+

3
+ _ sint + - _ p2acos(2r +4- t +)

-- - pa 2 [cos(2t + + T) + cos(2t + -- T)]

p3 3

4 cos3r ---_-cos3t+.



THE TWO VARIABLEEXPANSION PROCEDURE 247

It is easy to verify that as long as _0 _ 0, 1/3, 1 or 3 only the

terms with the argument r (i.e., the first two bracketed terms on

the right-hand side of (IV.63)) have the frequency _o 1 and hence

lead to unbounded solutions for large values of t+.

In this case p and _b are governed by

(IV.64a) 2_0_--Pt- -F /_p = 0,
_0 0

(IV.64b)

whose solution is

de 3 2 3 p3
2Pd-_ Jr- 2p _1 _ = O,_o _ pa -

(IV.65a) p = poe -(_/2_'_))t,

_SP0 (1 --e -(_/_2°)_)-F [-F ¢0.
(IV.65b) ¢-- _-7-

Thus, only the oscillations with integer multiples of the impressed

frequency are unaffected by the damping (cf. (IV.61) and the

right-hand side of (IV.63) with p--* 0). This common phenomenon

of nonlinear oscillations is pointed out here to contrast the more

unusual behavior to be exhibited later on for _0 = 3.

If _o = 1/3, the term -a3cos3t+/4 has the same frequency

(_o 1 = 3) as the homogeneous solution of F (1) and must therefore

be eliminated. It is easy to show that with _o = 1/3, 3t + = r - 3_

hence the term in question will have equal contributions pro-

portional to sin r and cost. When these contributions are added

to the terms already considered in (IV.64) and w0 is set equal to

1/3 one obtains

(IV.66a) 2alp 1(9) 33 dt" -k 3/_p - _ sin 3¢ = 0,

3 3p3 1
(IV.66b) 2p_--_t__-F [6_1 - _ (91 ] p - _ - _ (9)3cos3_b = 0.

We note that for/_ = 0 the above system possesses the integral

= - 1(9) J cos3_(IV.67) H 3p4-F311(9 1 _1]p2+_ P

which reduces the solution to quadrature.
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Except for some trivial difference in numerical constants and

the fact that in this case 3_ is to be regarded as the phase angle,

the above system is identical to the one discussed in the previous

section and will not be reconsidered here. The singular points of

(IV.66), which define the periodic solutions to order unity, corre-

spond to amplitudes at which steady-state oscillations with three

times the impressed frequency are found.

We now consider the final distinguished value of _0 = 3. It is easy

to verify that this is the only other value of _o for which a term

in (IV.63) with an argument other than T can resonate. In fact, if

_o = 3, the term -- 3p2acos(2T -- t+)/4 becomes 3p2cos(_ -- T)/32

and must be included in the grouping of terms with the frequency

1/3.

When the first two bracketed terms on the right-hand side of

(IV.63) are augmented by the above contributions, the equations

governing p and ¢ for the case _0- 3 become

dp
(IV.68a) dt" - 18 64 sin _,

3 o_1) 3pd__3p2+ 256 3(IV.68b) d}" 8 - _-_ cos¢.

This is the most interesting value of _o for this example, and

will be considered in detail. We note here that if, unlike (IV.65a),

one finds that p --_p® _ 0 as t--, _ with B > 0, then (cf. (IV.60a)

and (IV.61)) the phenomenon of "subharmonic" oscillations is

demonstrated. For, in this event the forcing function will have

excited one-third its frequency in the term p COST of (IV.61).
The notation

(IV.69c) _, = _ d- v ,

(IV.69d) T -
512'

(IV.69a) r = 8p,

256

(IV.69b) _ = _ _,
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simplifies (IV.68) to

dr

(IV.70a) d-T = - r (r sin _ + _),

de = 3 r2 r cos ¢ + _ p(IV.70b) d-T- - - "

It is easily verified that if _ = 0, i.e., zero damping, the system

(IV.70) possesses the integral

3r4 3r2 (v_ 1 )(IV.71) H = r3cos_b -- _ -_-

which shows that F m) describes bounded oscillations. Moreover,

since the only damping contribution is in the term - 7r of (IV.66a),

we conclude that the effect of _ > 0 is to decrease a given value

of r locally. Although the solution of (IV.70) can be brought to

quadrature if 7 = 0, it is more instructive, even for this case, to

study the qualitative nature of the integral curves. For this purpose

we set

(IV.72a) _ = rcos¢,

(IV.72b) _ = rsin _,

and transform (IV.70) to

[( ](IV.73a) d-T=- _ (_ + _)-3_ __ + 2_p ,

dr _ + [
The singular points of (IV.73) which we denote by (_i,_i),

i = 1, 2, 3 are easily computed to be

(IV.74a) _1 = _1 = 0,

(IV.74b) _2 = _3 = - _,

1 1

(IV.74c) _2 = _ Di- (I,' -- .y2) 1/2, _3 = _ -- (P -- ,_2) 1/2

We note from (IV.74c) that the singular points away from the

origin can only exist if v ->_2, which according to (IV.69c) means
that
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9_' -->5i2 + --- _CR.

The singular point at the origin, which always exists, is a spiral

(or center if _ = 0) and linearization of (IV.73) in the neighborhood

of the origin leads to the following approximate solution:

(IV.75a) r - roe-_T,

(IV.75b) ¢-3 (4-_) T+_0,

where ro and ¢0 are constants of integration.

Thus, if _ < _cR the behavior described by (IV.75) persists,

qualitatively at least, for all values of r. If "r > 0, the integral

curves are spirals which tend towards the origin, while for _ = 0

they form a set of nested, closed, simply-connected curves which,

for large distances, tend to circles centered at the origin.

To study the more interesting case _01> _CR we set p = a 2 and

denote the _, _ coordinates, referring to the two additional singular

points defined in (IV.74b) and (IV.74c), by an asterisk, i.e.,

(IV.76a) _* = _ - _i,

(IV.76b) 7" = ,1 - _i.

Equations (IV.69), when linearized in the neighborhoods of the

above singular points become

(IV.77a) d_*

(IV.77b) d_* _ _ 1 _,].dT "r_*+6_[(_ _) _*-

For _=0, we distinguish the two cases a_1/2. If a>1/2,

_3--(1/2)-a<0 while if a<1/2, both _2 and _3 are on the

positive _ axis. In either case (_2, 0) is a center while (_3, 0) is a

saddle and the integral curves have the qualitative behavior

sketched in Figures 3 and 4.

If _ > 0, the two centers become spirals, while the saddle-point

persists, and one can deduce the qualitative behavior of the integral

curves shown in Figures 5 and 6.
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/

FIGURE 3. Amplitude-Phase Diagram for a > _,y1 = 0o

FIGURE 4. Amplitude-Phase Diagram for a < ½, -¢ = 0.

Figures 5 and 6 confirm the fact that for certain initial amplitudes

the solution tends to the steady-state subharmonic oscillations with

the amplitude 42 = (1/2) -4- (_ - 2)1/2.

The shaded regions in Figures 5 and 6 correspond to solutions

which eventually achieve subharmonic oscillation while the un-

shaded regions correspond to solutions whose subharmonic compo-



252 J. KEVORKIAN

tl

,i

FIGURE 5. Amplitude-Phase Diagram for a > I_,'y> O.

FIGURE 6. Amplitude-Phase Diagram for a < ½, _ > 0.

nent is damped out. It is interesting to note that the initial values

which lead to one or the other of the above stable modes are located

on spiralling bands whose actual values can only be determined

by detailed numerical computation.

f. Multiple Damping. In order to emphasize the crucial role that

the choice of variables plays in the success or failure of the two

variable expansion procedure, we will briefly consider the fol-

lowing equation

(IV.78) _ + y +_ [:y3 + 3_vy] = 0

where v is a positive constant independent of c.
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This equation was pointed out by Morrison in [20] as an example

where the direct application of the two variable method fails, and

indeed this is easily verified by routinely expanding the solution

in the form (II.23) used in §II.

Since the only difference between the perturbing function in

(IV.78) and that discussed in §IIIb is the term 3_vy, one will

duplicate the results found for the problem of §IIIb to O(1).

Furthermore, an easy calculation shows that the added term in

(IV.78) only modifies the equation for B (1) to the following extent

(cf. (III.10b))

dB _) 9 B(O)2B(_) 3_B(0)
(IV.79) 2--_- + _ + = 0.

Using the result given in (III.6b) for B (°), (IV.79) can be readily

integrated to yield

(IV.80) B `_)= 1 [8B(,,(O ) 9- _-](3}_d_ 4)3/2 -- _ vt 2 -- 12_ .

The inconsistency of the two variable expansion is depicted by

the terms proportional to t'and f in the brackets of (IV.80). No

formal means of eliminating these terms is available within the

framework of the assumed expansion. Incidentally, the term

(9/2)vt'_(3t'-_ - 4) -3/2 i8 not only inconsistent, but also 0(/i/2) as
t---_ oa o

As pointed out by Morrison, the implicit assumption in the

present expansion that 3_2uy = O(_ 2) while _y3 = 0(_) is not true

for sufficiently small amplitudes, i.e., for sufficiently long times.

Herein also lies the answer to the correct choice of variables for

the applicability of the two variable expansion.

Since in the domain in t which is of interest _y3= 0(2y), we

must use a "blown-up" variable _--- -,/2..y in terms of which the

two terms in question are explicitly of the same order of magnitude.

Thus, (IV.78) becomes

(IV.78') dt,_ -}- y -}- \-_ ] + 3v = 0

and the method discussed in §II now applies directly as long as
2c is used instead of c in all the formulas.
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In particular, the correct slow variable for this problem is _2t

and a consistent, bounded solution for 7 in terms of the two vari-

ables t and e2t can be derived routinely using the formulas of §II.

One can also verify that as v--0, the results so derived reduce

to those of §IIIb.

g. Nonuniformity with Respect to an Initial Parameter. In the

preceeding example it was shown how the two variable expansion,

in terms of a given set of variables, might break down because

the orders of magnitude assigned by the assumed expansion to

two of the perturbation terms is incorrect for times which are

sufficiently large.

In this section we will study an example where the orders of

magnitude of two perturbation terms is in error not for long times,

but for certain values of an initial parameter say the amplitude.

This more subtle breakdown of the two variable expansion pro-

cedure and the correct treatment of the problem for the case of

a critical initial amplitude will be only summarized here. For a

detailed exposition as well as a discussion of the related problem

in celestial mechanics, the reader is referred to [6].

Consider the equation

j_+ y+ 2_y(1 -- 5cos2R) = _2Rcost(IV.81a)

where

(IV.Slb) R 2 = y2 + :y2.

In the absence of the forcing function, this equation can be

integrated exactly and exhibits the following behavior in the

phase-plane of y and 2J. Whenever the radius R = [y2q_ 3)211/2 in

the phase-plane takes on the critical values Rc = cos-1(5)-1/2, the

motion reduces to simple harmonic oscillations with amplitude

Rc and unit frequency. For each annular region bounded by two

consecutive values of R_, the integral curves are ovals with their

axes aligned alternately parallel either to y or to :y. One would thus

expect that the addition of the forcing term with unit frequency

will cause local resonance in neighborhoods of the critical amplitudes

R_. As will be shown later on in this section, this will indeed be

the case and will give rise to the problem of the "critical amplitude."
We assume that y may be expanded in terms of t and t = _t
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in the formQ °)

N

(IV.82) y = _ FC,)(t, _ _) n 4- 0(_+1).
n=0

The governing equation for F (°),

(IV .83) _(o) F(0)"'11 + =0

has the solution

(IV.84) F (°) = a(_ _) cos [t - _(_ _)]

where we assume that a and _ may also be expanded asymptotically

in the form

N

(IV.85a) a(t,'() = E an(/) en + O(cN+l),
n=0

N

(IV.85b) t_(t,'_) = _ Bn(_c n + 0(c_+1).
n=0

From (IV.81) and the above, the following equation for F (1)
can be calculated

F(1) F(1) ___11 -_- = 2 sin(t -- _)

(IV.86)

V d_o
- 2ao L_- + (1 - 5cos2ao) 1 cos(t -

The boundedness of F (1) gives

(IV.87a) ao = ao,

(IV.87b) So = sot'+ bo,

_).

where a0 and b0 are constants depending upon the initial condi-
tions and

(IV.88) So = 5cos2ao- 1.

With the right-hand side of (IV.86) equal to zero, the solution

(10) In (IV.82) the fact that the F(n) may also depend on _ is a trivial generaliza-
tion of the previous procedure to allow for routine computational simplifications.
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F (1)= 0 introduces no loss of generality by virtue of the expan-

sions (IV.85).

The equation for F (2) can be calculated in the form

Fl(2_F(2)(_ )+ = 2 -- aosin_ sin(t- _)

(IV.89a) + _o S2o- -2 aoSosin2ao + cos_ + 2s_1

_) 5 _o2So(sin2_°) c°s3(t - _)- 2 cos(t - _) -

where

dso

(IV.89b) s_ -= dao 5sin2a0.

The requirement that F (2) be bounded dictates the following

equations for al and /_1:

dal ao
(IV.90a) d_ - 2 sin f_,

d_l so2 5 1
(IV.90b) d_ - 2 4 a0s0sin2a0 + _ cos_ + S_al.

Since for So--_0 (i.e., a0 = cos-1(5) -lj2 = ac) /_ = b0 + _1+ O(e2),

the integration of (IV.90) will lead to the conclusion that al = O(e -1)

for this case. This is an inconsistency( n ) in the expansion procedure

indicative of a nonuniformity as s0--_ 0. We point out, however,

that as long as So is not small the integration of (IV.90) leads to

consistent and well-behaved results.

In this simple model the cause of the difficulty is easy to discern

and remedy. As was pointed out earlier, whenever a = ac the non-

linear system degenerates to simple harmonic motion at the fre-

quency of the forcing function. Therefore, in some neighborhood

of ac the amplitude must locally behave as though the system was

in linear resonance, (cf. the discussion after (IV.90b)). Due to this

local effect the forcing function, which would otherwise be of order
2e now takes on a more important role. This fact is exhibited in

(n) Alternatively, if in (IV.90a) we regard sin_ = sinbo+ OG), we conclude
al = t (ao/2)sinbo which is also inconsistent.
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the equations for dao/dtand d/3o/dtwhich are both small when So

is small. Hence in this case one cannot neglect the higher order

terms in computing a0 and 80.

This observation was first made by Struble in [26] in connection

with the related problem of a "critical" inclination in celestial

mechanics. The intuitively obvious approach for the case ISol <<1

is therefore the anticipation of the importance of the forcing func-

tion and its immediate involvement in the solution for a0 and 80.

Thus, we append ca cost = ca [cos(t- _)cos_ - sin(t- _)sin/_] which

is the contribution to 0(_) of the right-hand side of (IV.81a) to

(IV.86) and obtain the following equations(12) for a and 8:

da c

(IV.91a) d--_~= _ a sinE,

dE
(IV.91b) d--_ = - (1 - 5cosga) -{-2 cosS.

The terms of order t in (IV.91) which are exclusively the con-

tributions of the right-hand side of (IV.81a) will radically alter

the behavior of a and _ near the critical amplitudes.

Equations (IV.91) are Hamiltonian, hence along an integral curve

5

(IV.92) 2H = 3a +_ sin2a + ea cos_ = const.

With the aid of (IV.92), the integral curves in the a, B plane

can be easily calculated. The singular points are located at /_ -- _,

= n_, n = 0,=i= 1,=t= 2, ... and cosa = cosa, = d: ((2 _t)/10)1/2.(13)

These points form an alternating pattern of centers and saddle-

points with solution curves as shown qualitatively in Figure 7. It
should be noted that for each of the infinite number of values of

a with cosa near to =i= 5 -1/2 there is a stream of solutions analogous

to the stream which is shown in Figure 7 for a in the first quadrant

and cosa near 5 -1/2.

(12) Note the subscripts on a and _ have been dropped in the ensuing discussion
to distinguish this case from the previous calculations where so _ 0. However, a
and _, as used here, should be regarded as approximations of the quantities ap-
pearing in (IV.84) for the case Is01 <<1.

(13) The upper or lower signs inside the radical are to be taken when _ is an
even or odd multiple of T respectively.
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We observe three possible types of motion if we consider the

integral curves in horizontal strips with a width of order _;2 centered

about any of the critical amplitudes.

The integral curves which pass through two adjacent saddle-

points for a given value of as form the boundaries of oval regions

with a width also of O(e li2) inside which both a and _ undergo

bounded oscillations. For example, the motion in the neighborhood

of the point _s = 0 and as = cos-_((2 - _)/10) li2 has the form

(IV.93a) a = _, + Cl_l/2cos [(2_a_)1/2['+ c2],

(IV.93b) _ = - 4cl(2a,)-l/2sin [(2cas)_/2t% c2],

where cl and c2 are small constants depending on initial conditions

which allow the linearization of (IV.91).

The separatrix forming the above boundary corresponds to motion

where a and B approach the value at the saddle-point asymptotically

as t --+ oo. In fact, by use of (IV.92) it is easy to show that the separatrix

around the point 5s = 0 and as = cos-1((2 - e)/10) 1/2for 0 < a, < 7r/2

intersects the a axis at a distance (e/2)l12cos-l(5)-lt2 + 0(_) from

the singular point. Finally, the motion just outside the oscillatory

regions is characterized by the fact that _ undergoes hounded os-

cillations, while ¢1 has a secular motion superimposed on its oscil-
lations. In all three of the above motions the characteristic fre-

quency is O(e a/2) in the natural time variable whereas the amplitudes

of oscillation are O(t _/2) (cf. (IV.93)). This immediately suggests

that the slow time scale appropriate for motion near the critical

amplitudes is t = _312t, and that one must seek an expansion for

y in powers of 1/2.

In contrast, when the initial amplitude is not critical, we note

from (IV.90a) that a oscillates with amplitude and frequency both

of order t and that the oscillatory as well as secular components

of _ behave similarly.

The above intuitive construction essentially duplicates the results

of the more systematic approach wherein one sets So = _1i2_0 holding
_0 fixed as e--+0 and uses t = _3J2t as the slow variable. The details

of this as well as the important question of matching the two types

of solutions near and away from the critical amplitudes are covered

in [6].
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V. Applications for satellite motion.

a. Formulation o[ the Satellite Problem. We consider the motion

of a particle under the influence of an arbitrary force F. We assume

that the variables are all made dimensionless by dividing distances

by a given characteristic length, and the time by a given charac-

teristic value to be specified for each problem. If x, y, z is a Cartesian

inertial coordinate system we introduce the conventional spherical

polar coordinates r, _b, 8 defined by

(V.la) x = rcos_b sint_,

(V.lb) y = rsin ¢_sin#,

(V.lc) z = rcos_.

Let the vector from the origin to the particle be denoted by x.

The components of generalized force in the r, ¢, 0 directions are

defined by

0x
(V.2a) Qr-_ F. O-_'

Ox
--7(V.2b) Q_ = F.O_

0x
(V.2c) Q, = F.--.

08

With the kinetic energy T in the form

lf/dr_ 2 r2sin2 0 (dC)2 fdO_2-]r2(V.3) T=
_-d-[ ) + \at + \ dt / _]

the equations of motion(14) may be written in the form

d (r2sin2O_t) =Q_,(V.4a) d--/

d [r, dO_ r'sin0cost_ [de
(V.4b) d--[\ dt ] - \ dt ] = Qs,

d2r fdo_ [d_
(V.4c) dt 2 r \-_/ - rsin28 \dt / = Qr.

(14) If x, y, z is not an inertial frame, we may still use (V.4) as long as we include
in F and the ensuing values of Qr, Q_ and Q#, the necessary fictitious forces due
to the motion of the origin relative to the inertial center.
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Since the satellite can be considered to move in an instantaneous

plane defined by the distance and velocity vectors, one may also

define the motion in terms of the following variables proposed by

Struble in [24]. The geometry is sketched in Figure 8.

i = inclination; angle between x, y plane and the instaneous

orbital plane.

= longitude of the node; angle in the x, y plane between some

fixed direction, say x and the ascending node.

¢ -- angle between the ascending node and the distance vector.

T"

lane of x and

'\O x

/
X

FmURE 8. Geometry of Struble's Variables.

Struble(15) has shown that equations (V.4) transform to the fol-

lowing fifth-order system after elimination of the time (where we

use a prime to denote differentiation with respect to ¢):

(V.5a) P' = Q* LC-_-i _ psin2isin0 k{_s-4- tanl s-_- _ Q_

(V.5b) _' - (Q, A- tan i (cost/sins) Q_) cos3i cos8
p2u2sin2i sin 8 + cos4i cos 8 (Qe + tan i (cos c/sin _) Q_)'

(15) Note that Struble in [24] defines the node in the opposite sense.
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sin2i cos3i cos¢ (Q0 -4-tan i (cos c/sin o) Q_)
(V.5c) i'= -

p2u2sin2i sin 0 + cos4i cos 0 (Q0 + tan i (cos S/sin 8) Q,) '

u" - 2 (u,) 2 A u'(d¢/dt)1
u d¢/dt

(V.5d)
(p2uS/cos2i) -4-u2Qr

+ (d_/dt)2 -- O,

where p is the component of angular momentum along the z axis

and is defined by

(V.5e) p = r2sin20_

and u is the reciprocal radius

1
(V.5f) u = -.

r

In equation (V.5d) do/dt and 0 are defined by

(V.6a) dq_-pu2÷c°s3ic°sO( . coach )dt cos _ p sin2i sin _ Q_-4- tan, sin_-0 Q* '

(V.6b) cos _ = sin i sin ¢.

Up to this point the derivation has been quite general with no

assumptions regarding the nature of the force F.
In this section we shall consider only satellite motions, i.e.,

bounded motions which, in the absence of small perturbations upon

a central force field reduce to a Keplerian ellipse. Thus, we shall

require that the forces have the following form

1
(V.7a) Qr = - _-÷ eQr,

(V.7b) Q_ =e Q_,

(V.7c) Q0 = eQ0,

where the Q-are arbitrary functions(is) of the coordinate velocities,

t and e restricted only to the extent that for a sufficiently small

initial energy the particle will remain in some neighborhood of the

(16) Note that by a proper choice of dimensionless variables, the dominant

component of the gravitational attraction which is spherically symmetric can
always be brought to the form - 1/r 2, free of superfluous constants.
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origin under the influence of the above forces.

This excludes, for example, a constant tangential thrust force,

no matter how small its magnitude might be, since eventually such

a force would impart a sufficient energy to propel the particle to

escape velocity.

Use of (V.7) in (V.5a), (V.5b) and (V.5c) displays the fact that

p, t_ and i are constants when e = 0. The important role of the

above coordinate system becomes evident only after one substitutes

(V.7) into (V.6b) and (V.5d) to obtain the following equation for u

u"+(l+eH)-2u= 1-c Q_ 1+_ -1__ +K
_- p2

(V.8a)

where

Mcosi

(V.8b) H= PU_ ,

c°sSi c°s0 (_-4- tan "c°s ¢ )(V.8c) M = P sin2 i sin 0 t sin_ _ '

uu' (u2p'cos i + pu2i' sin i + _M'cos i) - 2_ (u')SM cos i
g B

(V.8d)
u cos i (pu 2 + ¢M cos i)

= O(d.

Thus, as _--_ 0, u is governed by the equation

(V.9) u" + u = constant

and the two variable expansion procedure applies to the problem

with c << 1.

For planar motion, i.e., Q0 = _ = i = 0; 0 = _r/2; _b= ¢; Q_ = Q,,

one obtains the following very simple equations

1 _ -- --

(V.lOa) u" + u = p2 p2u2 (Q_ + Q_u'),

Q_
(V-.10b) p' = --

e PU 2 ,

1

(v.10c) t' =

Equations (V.10) may also be written in the form given below

where the value of p given by (V.10c) has been used explicitly
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(V.11a) u" -{-u = u4(t') 2- _u2(t') 2 (Qr -4- _du )*de '

(V.11b) (u2t') ' = - _u4(t')a_.

In the next two sections we shall consider two examples of planar

motions. For applications of the two variable procedure to general

nonplanar satellite orbits the reader is referred to [6] and [7].

b. Aerodynamic Perturbations of a Satellite Orbit(17). A satellite

is assumed to move in a planar orbit about a homogeneous, spheri-

cal, and nonrotating earth surrounded by a thin constant density

atmosphere. It is also assumed that no other celestial bodies in-

fluence the motion of the satellite. The drag coefficient and lift-drag

ratio of the satellite are taken to be constants. This physical model

admittedly departs considerably from realism, and is presented only

to illustrate the qualitative behavior of the motion. The more

realistic model with a variable density, and aerodynamic coefficients

depending on Mach number and angle of attack can be treated by

this method at the cost of considerable algebraic complication.

The dimensional equations of motion may be written as

d2r*

dt .2

(V.12a)

r* (&h_ 2
--- /

r .2 2m Ldt* - nr*dt, jL \-d_-] + r*2 \-d_-] ] '

r* d2¢ + dr* de
dt,------2 2 _ dt*

(V.12b) _ CopS [- , de dr*, Fl (dr* _2
2m / r \d-T/

where

Co = drag coefficient of the satellite,

G = universal gravitational constant,

M = mass of the earth,

m = mass of the satellite,

n = lift-drag ratio of the satellite,

r* = radial distance from center of earth to satellite,

S = reference area of the satellite,

(17) This section is a revised version of the work of Simmons in [22].

+ r*2 \_7-] _j ,



THE TWO VARIABLE EXPANSION PROCEDURE 265

t* = time,

p -----atmospheric density,

= true anomaly.

If the following dimensionless variables are.,, defined

r* t* CDpSR
r =---_; t =-T; _- 2m

where

R = initial radial distance of the satellite,

T = characteristic time scale = (R3/GM) l/z,

= aerodynamic parameter (ratio of drag to centrifugal force

at r= R).

Equations (V.12) may be rewritten in the nondimensional form:

1 , [t - nr_][r 2 -q- r2_21 I/z,
(V.13a) J'- r_ 2 = rT

(V.13D) r_ -4- 2_4; = -_ Ire A-n¢] [_2 + r24_2]x/z.

With the F implicit in (V.1 3) we obtain the following values

of Qr and Q_ from (V.2) and (V.7)

(V.14a) _ -- p2(u' -4- nu) [(u') 2 -4- U2] 1/2,

p2
(V.14b) (_ = _ (nu' - u) [(u') 2 + u2] in.

Hence, use of u and t as dependent variables (cf. (V.11)) trans-

forms (V.14) to

(V.15a) u" + u = u4(t,) 2 _ _u-_n[(u,)._ + u_]8/2 '

(V.15b) u2t"+2uu't'='t'[ 1-n ]-uu' [(u') 2+ u2] '/2.

The following initial conditions are adopted at _ = 0:

(V.16a) u = [ao(1 q- e0)]-' = 1,

(V.16b) t = 0,

(V.16c) u' = 0,

(V.16d) t' = a3/2(1 -4- eo2) (1 - e2) -1/2

For c = 0, the above initial conditions yield a Kepler ellipse with
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the following elements:

ao = semimajor axis,

eo = eccentricity,

¢o = 0 -- longitude of apogee,

To = 0 = time of apogee passage.

We assume that u and t have the following expansions:

N

(V.17a) u(4,; e) = _ U('°(¢, _) ¢" -4- O(eN+._),
n=O

T(;)
(V.17b) t(4_; c) -

where as usual ¢ = _.

N

__ + _ T(")(_, ¢) ," + O(e N+I)
n=0
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(V.19a)

(V.19b)

where

(V.19c)

(V.19d)

U (°)--/2[1 - ecos(¢ - f_)],

T (°) = a3/2[_ + esin ¢] + r - T2¢,

sin ¢ = [(1 - e 2) 1/2sin(¢ - f_)]/[1 - e cos(¢ -/3) ],

12 = a(1 -- e2).

The need for the term T(¢)/t in the expansion of t was pointed

out by J. A. Morrison in a private communication, and its use
will become evident later on.

The following equations for U (°), U (1_, T (°) and T (1) now follow

from (V.15) and (V.17)

(V.18a) LJ1111"(0)-[- U (0) = U(°# ( T_ °) + T2) 2,

(V.18b) U(°)2T_°_ + 2 U(°)U_°)(T_ °) + T2) = 0,

U_)+ U (1)= _ 2U_O_ + 2 U(°_.4(T_°) + T2) (T_I) + T2(°))

n

(V.18c) + 4 U(°)3U(l)(T_°) + 7'2) 2 - U(O)---_ (U_ °) 2 + U(O)2)3/2'

U(°)2(T_) + 2T_°) + T=) + 2U(°)U(1)T_°) + 2U(X)U_°)(T_ °) + T2)

(V.18d) + 2U(°)[U_°)(T_X) + T(2°)) + (7"(1°)+ T2)(U_I) + U2(°))]

= (T_ °) + T_) (1 - n _-_) ) ( U_°)2 + U (°)2)1/2.
o,

The solution of (V.18a) and (V.18b) is
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In (V.19) a, e, 8, r are functions of _ which according to (V.16)

have the initial values ao, eo, 0, 0 respectively.

For simplicity we shall henceforth neglect terms of order e 2. This

approximation will be justified later by the fact that e0 -_ 0 as _b--, oo.

Equation (V.18d) can be integrated to

(v.2o)

U (x_ dl

U(°_(T_" + T(_°_)+ 21-_ + -_

1 [_ q- e sin(¢ - 6) q- ne cos(_ - #) q- O(e 2) ] = g(¢)
l

and use of (V.20) in (V.18c) leads to

2 de 41e dl _ sinI 7,_,_]) ___U (1)= 2e -- 21 _ - d_ /
(¢ #)

/2d8--_ n) cos(4_ 2(1 Id_ )(V.21) + 2e _l + - 8) + -

+ 2lg - n.

The boundedness of U (1_ requires that

¢

dl

(V.21a) 1 - l_-_ = 0,

_2 de

- 21e_-_l_ = 0,(V.21b) e- l _-_

2d8
(V.21c) l _ + n = 0,

whose solution defines a, e, and 8 in the form

(V.22a) a = 1-2+ O(e z) = (1 + 2_)-1,

(V.22b) e = e0(1 -4- 2¢)-1/2,

n

(V.22c) 8 = - _ log(1 -4- 2_).

Equation (V.21) may now be solved in the form

(V.23) U (1)= A(¢)sin(¢ - 8) + B(¢)cos(¢ - 8) + 21g - n

where A and B are functions which are to be determined by the

boundedness of U (2).
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Using (V.23)in (V.20) leadsto
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T_ 1) = - _-_ -4- 3a2g -4- 3aS/2eB + 3a5/2_ - na 5/2

A- (3a 5/2 -4- Tz2)¢ -4- aS/2(9e - 2A)sin(¢ - _)
(V.24)

- aS/2(2B - 5en -4- lOa-1/Zeg)cos(¢ - _)

- 3aS/2e [A sin 2(¢ - _) A- Bcos2(¢ - B)].

Upon integration of (V.24), the first two terms on the right-

hand side would lead to contributions proportional to ¢ and ¢2

respectively in T (1). This clearly contradicts the consistency of the

two variable representation of t unless the terms in question are

to vanish identically. One then obtains the following equations

defining r and T,

(V.25a)
dr

d_
3aS/2eB -- 3a2g -- 3a5/21_-4- aS/2n,

d2T

(V.25b) d_ 2 + 3a 5/2 = 0.

The solution of (V.25) hinges upon the prior determination of

g and B, both of which can only be defined by conditions upon

the terms of OG 2) of the solution.

This property of the time-history of the motion is not a mere

consequence of the present expansion of t as in (V.17). Had we

adopted the formulation of (V.10) and computed the pair of vari-

ables u and p first, the quadrature of (V.10c) leading from the

angular momentum p to the time t would have led to the same

conclusion: that knowledge of u and p to 0G) was necessary to

compute t to 0(E). This is easily seen by noting that the expansion

for t' will in general contain long-period terms proportional to _ (_¢)

which upon integration drop in order by one power of t. Thus,

the long-period terms of order n+l in the expression for t' must

be known together with all the terms to order tn before one can

also compute t to 0(t ") for any n.

If, in contrast to this example, there existed an exact integral

of motion (such as the energy integral, for instance), one could use

this integral to compute t to any order in t" from knowledge of. u

and p only to the same order n. Briefly, this comes about because
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the integral provides the unknown long-period terms of t' to 0(_ "+1)

once all the other terms in this quantity have been computed to

0(_"). For a detailed discussion of this point, the reader is referred

to [7] and [8].
We now return to the determination of T which follows from

(V.25b) and the initial conditions T(0) = 0, T2(0) = 0 derived from

(V.16b) and (V.16d). One calculates

(V.26) T = (1 - _) - (1 A- 2_) -1/2.

We note first that as e --* 0, e-lT--_ 0 as one would expect. More-

over, the role of T in the expansion (V.17b) is clear if we observe

that omission of T in (V.17b) will lead to a value of T (1) containing

the inconsistent term (3/2) aS/2_b2 = (3/2) ¢2 + O(e 2) according to

(V.24). This is the leading term in the nonuniform representation

of T for large values of _b, obtained by expanding (V.26) in its

Taylor series around the origin.

The procedure for calculating the higher order terms of this solu-

tion essentially parallels that used in prior examples and will not

be given.

Although the time-history is only partially defined, the results

of (V.22) establish the dominant behavior of the orbit in space.

The effect of drag is to cause both the semimajor axis and ec-

centricity to decay monotonically. Since e continually decreases as

the orbit evolves, the omission of the nonlinear terms in e is justified

for sufficiently small initial eccentricities. To this order, the only

effect of the lift force is a slow regression of the apse, and a net

decrease of U (1) by the value n, (cf. (V.23)).

c. The Motion of a Close Satellite in the Restricted Three-Body

Problem. The author in [15] has shown that for sufficiently close

satellites of the smaller primary the following are a limiting form

of the equations of the restricted three-body problem:

x

(V.27a) _ = - _-_-+ 2_y -4- 3t2x -4- 0(¢4),

- Y- 2_x + 0(_4),
(V.27b) y ---- r3

(V.27c) r 2 = x 2 + y2.

The Cartesian coordinates x, y locate the particle of negligible
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mass in a uniformly rotating coordinate system centered around

the smaller primary. The ratio of the mass of the smaller primary

to that of the system is denoted by u = 4 and the distance and

time variables in (V.27) are of the order 2 and e respectively in

terms of the conventional dimensionless variables of the restricted

problem.

Even though the x, y system is noninertial we may regard the

right-hand sides of (V.27) as the x and y components of F to compute

the following expressions for the generalized perturbation forces

(with p and u as in (V.Se) and (V.5f)):

(V.28a) Qr = 2pu + 3____cos2 ¢ + 0(3),
u

(V.28b) Q-,_ 2p du 3c
u d$ u2 sin¢cos¢ + O(e3).

Equations (V.11) then become

u" + u - u4(t ')2= _ 2et, U + u
(V.29a)

-k_3 2(t,) 2 [u'sin 2¢ - u (1 + cos 2¢) ] + 0(_ 4)

3

(V.29b) ut" + 2u't' = - 2E u'(t') 2 + -_ e2u(t')3sin 2¢ + O(e4).

The author has solved the above by a technique analogous to

the method of Lindstedt for the following set of initial conditions:

(V.30a) u(0) = ao1(1 + e0)-l,

(V.30b) u'(0) = 0,

(V.30c) t(0) = 0,

(V.30d) t'(0) a_/2(1 -_- e°)2 _a°3(1 -_- e°)4
- (1-e2) 1/2 -k 1-e 2 -k0(_2).

Here we shall summarize the analysis using the two variable

expansion procedure which duplicates the results of the earlier work

by a more systematic approach.

We use ¢ as the fast variable and adopt _ given by:

(V.31) ¢ = _¢(I -_- ale -k OL2_2 -_- "" ")
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as a slow variable. The reason for distorting the slow variable here

rather than the fast one as done previously is because the equations

of motion contain _ directly and it is therefore a natural variable

for the problem.

We expand u and t in the form(is)

N

(V.32a) u = Z u(n)(_a,;)_n -}- o(eN+l),

n=0

N

(V.32b) t = _ T(")(¢, ¢) _" + 0(eN+l).
n=0

The following lengthy formulae follow from (V.29) upon substi-

tution of (V.32) with N = 2:

(V.33a) t...,llTr(o)+ U(O) = U(O)4T_O_2'

(V.33b) _f r(0) r/',(0).,ll +2 _TT(0)1 air/"(0) =0,

U1 1) U (1) 0 T T(0) O T 7(0)4T(0)/rp(1) _ T(O))1 --_ _ - _ ,.J12 -_- _ _ _t 1 i. a 1 T

(V.33c)
+ 4 U(°)3T_°)2U(1) - 2 U (°)T_°_ 2 Tr(o)2,v(o)

--U(O--- ) u1 -.1 ,

U(O)[T(_) o q,(o)_ T r(1)T(o) o T(o) [_ r(1) U2(O))_..L 11 -[- -[- + +-(12 ] _ .Lll .¢.,a I _ L._ 1

(V.33d)
_{_o TT(o)t,r(1) T2(O_)= o T_(0)_(0)2

U1 2) U (2) 0 1 T(1) U(2_ 0) T T(1)1 _ .... ,- _12 2a1_12

_.J_,,,.._oT r(o)4T(o)/q'(2)Zl_._ 1 + T (1) _].._ alV2(0))

-_- U(°)4(T_l) -_- T2(°))2-_- uf_TT(O)3TT(1)rp(O)IrlI(1),Ju _I t al -_ T2(°))

+ 4U(°)3U(2)T_°)2+ 6U(°)2T_°)2U")2- 2 U(°)(T_')+ 7"(2°_)

(V.33e) _ 2 U(1)T_O) 4 TT(O)q.,(O)[TT(1) U(O) )

U(O) tJl _tl _.,J1 -[-

2 Tr(o)2/,v(1) 712(o)) 2 TT(o)2,v(o)rr(1) 3 U(O)T_O)2
U(O) t__l ,--1 -[- 2v _-_ ,.Jl "L1 _ --

3
+ _ T[°)2(U[°)sin 2¢ - U(°)cos 2_),

(18)Note that here it is unnecessary to include the term T(_)/E in (V.32b)
as was done in (V.17b) since the expansion for t will not contain a term pro-
portional to ¢2.
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U(O)[ r}-_(2) _ rp(1) T(2_) r_(0)/ T T(1) [ r/_(l) O r/'_(0) ht,,n + _12 + +2ai_12,+ ,-, _11 +--_,12/

+ U(_)T_°)+ 2TI°_(UI_)+ U_(_)+ ._U_(')
(v.a3f)

+ or r(0)/q_(2) alT2(O)) om(o)e_rr(1). /_72(0))-_x _i + T2(1)+ -4--_1 kt-vl T

+ 2(U_)+ u_°)+2U_°)T}°_)(T_'+ T_°))

3 U(0)T_0)3si n 2_.
2

Equations (V.19) with T = 0 also define the solutions of (V.33a)

and (V.33b), and substitution of these results into (V.33d) leads

to the integral

2 l U (1) lX dl
(V.34) U(°)2(T_') + T(2°)) + -_-_ + U (°)2 d_ _ = g(_)"

We again assume e is small(19) and neglect all nonlinear contri-

butions in the eccentricity in calculating (V._3c) as given below

U(,) ± U(1) = _ 2d(12e) . . __ 1)
(-/3) + 2e I x -_- cos(q_ -- /3)--d-t-11

\ ¢
(V.35)

dl 2
--- o+2tg.

a$

Boundedness of U (') defines l, e and _ as follows

(v.a6a) I = constant = l0 = [a0(1 - eo2) ]-,/2,

(V.36b) e = constant = eo,

(V.36c) B = - Io3_,

and the solution of (V.35) becomes

(V.37) U (1)= A(_)sin(¢ -/_) + B(¢)cos(¢ - B) + 2log.

Equation (V.34) can now be integrated to give

T (x)= 2(e0ao a - 5eoa_g - a_/2B)sin(¢ - _3)

(v.38) (+ 2a_/2A cos(¢ -/3) - 3a_g + 3eoa_/2B + -_

(19) The analysis for arbitrary values of e is given by Eckstein in [9].

3 eoa_/2[A cos 2 (_b --/_) -- B sin 2 (¢ -/_) ] + h (_),
+_
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and we require the term which is linear in ¢ to vanish by setting

dT
(V.39) - 3 (ga 2 + eoa_/2B).

d_

We next integrate (V.33f) in the form

+ 7'2(1)+ _IT_ °)) + 2 U/_o)U (2)- 3
lo

U(o)2(T_2) U(1)2
U(O_2

• 12 U(1) 2 g U(X_ l_ 2 lo
(V.4Oa) + a.._ + U _°_ U (°_4 ._g

dg
+-_ ¢ - Q= k(¢)

where

3eo . 3 e0
(V.40b) Q = -/_-cos[¢ + _) - _o5 cos2¢ - _ cos(3¢ - _).

After some manipulation (V.33c) becomes

Ul_2_ U(2_1 + = - 2/o ¢

+ 2_-_ cos6- 2_-_ --8eoag+6eoaog

+ 2a_eoa_/2) sinB] sine

dB ( 2 dA
- 1 2 _-_ sin _ + \ d_ + 7e°a°2+ 6eoaog

(V.41) + 2a_eoa_/2) cos/_] cos¢

-- 5eoaocos(3¢ - B) - 3ao2cos2¢

- 6eoao3/R[Asin2(¢ - B) + Bcos2(¢ - B)]

+ 2lok + g2 _ a_ 2Beoa_/2
2

and elimination of the terms proportional to ¢, sin(¢- B) and

cos(¢-B) on the right-hand side of (V.41) defines g(_), A(¢-)
and B(¢) as follows

(V.42a) g(¢) = const. = go = g(0),
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(V.42b)
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15 eoa_/2si n 2_ + A (0)
+-g

15 eoa_/2(1 _ cos2/_) + B(0)
(V.42c) B(_) -- -_

The term proportional to _ in (V.42b) must be eliminated in

order that the expansion be consistent, and this defines o_1 as follows

(V.43) al=a_/2(4-3g0) •

The initial conditions (V.30) imply that

(V.44) go = A (0) = B(0) = r(0) = 0.

Hence

(V.45) r = 0(e 2)

and the results to O(e) are complete except for h(¢).

A straightforward calculation shows that the above agrees

exactly with the author's results in [15].

After a slightly more complicated transformation of the various

variables one can show that these results are also identical with

the "lunar theory" of de Pont_coulant (cf. [4]) for the case i = 0

and to the order presently computed.
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Rendezvous Problem

I. Basic orbital information. The definitions of the major symbols

are:

a:

E:

V:

p:
T:

i:

(I.1)

(I.2)

(I.3)

(I.4)

semimajor axis

eccentric anomaly

true anomaly

parameter of ellipse--semilatus rectum

period

inclination angle

_: argument of perigee

i_: argument of ascending node

e: eccentricity

R: equatorial radius of Earth

r: distance from Earth's center

T: time at epoch.

In terms of these quantities we will use the well-known relations:

rp = a(1 - e); pericenter distance

r_ = a(1 + e); apocenter distance

p -- a(1 - e2); semilatus rectum

T = 2,ra_/2_-w2; period

276



_: 1.407639 X 1016ft3/sec 2 for the Earth's gravitati¢_lal

27r

(I.5) n ---- w"-- --1_1/2a-3/2; mean motion
T

(I.6) M = n (t- T); mean anomaly.

If the Earth's potential function is represented by

(,.7) U=u-[1-_j"(R) nPn(sinL)]r,=2

where

277

constant

Pn = Legendre polynomial of order n,

L -- latitude angle,

then the first order secular perturbations in the orbital elements

of an Earth satellite in the absence of air drag are:

3//_\1/2 (pR___)2(I.8) l_,- 2a _a) J2 cosirad/sec

3(I.9) _,= _a) J2 (-l+5cos2i)rad/sec

(I.10) M, = _ J2 (1 --e2)1/2( - 1 _- 3cos2i)rad/sec

(I.11) _,=-31rj2(R)2cosirad/rev

d, = 3_ J2 (R) 2 (- 1/2 _- 5/2cos2i)rad/rev
(I.12)

= 37r J2 (R) 2 (1 -e2)1/2( - 1/4 + 3/4cos2i)rad/rev(I.13) M.

where J2 = 1082.28 X 10 -6.

EXAMPLE. For an orbit with i = 30 ° and an altitude of 300 statute

miles, one finds that

= _ 0.442O/rev _ -- 6.8O/day,

o) = 0.705°/rev _ 10.8°/day.

II. Rendezvous phases. Rendezvous can be divided into the three

phases:
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(i) ascent_and injection into transfer orbit

(ii) terminal phase

(iii) docking--contact between ferry and target vehicles.

In the present chapter, we will give no discussion of (iii).

There are a wide variety of possible types of ascent maneuvers

and a few remarks will be made concerning the characteristics of

some of the basic types of ascent maneuvers.

a. In-plane Ascent. For this, the launch site must be in the orbital

plane of the target.
An in-plane ascent requires that the target vehicle travel in a

compatible orbit; that is, an orbit in which the target passes over
the launch site at least once per day. This is a severe requirement

and its practical realization will probably require means for ad-

justing the orbital plane of the target vehicle.

Target's Orbit

_'_Target

FIGURE 1. Transfer Orbit

b. Adjacency Transfer. The ferry is inserted into an orbit close

to that of the target, but not necessarily in the same orbital plane.

The ferry transfer orbit is selected so that its orbit is at the same

altitude and has the same speed as the target at the time at which

the two objects intersect. At the time of intersection, the ferry

is given a velocity impulse such that its orbit plane is made co-

incident with that of the target.

c. Two-impulse Transfer. The first impulse inserts the ferry into

a transfer orbit such that the apogee of the transfer occurs at the

orbit of the ferry and the timing is such that the ferry and target
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are simultaneously at the apogee of the transfer orbit. When the

two orbits touch, a second velocity impulse is given to the ferry

to bring it up to orbital speed and, if necessary, change its orbital

plane to coincide with that of the target.

d. General Ascent. The ferry is injected into a general transfer

orbit which is required to intersect the target on either the out-

going leg or the incoming leg. The timing problem for these ascents

is very critical and typical launch windows are only of about 3

minutes in duration.

e. Parking Orbits. An intermediate parking orbit greatly simplifies

the timing problems for an ascent transfer trajector. The ferry is
first launched into a circular orbit at a lower altitude than that of

the target. Because the ferry will have a shorter period of revolu-

tion, it will gain on the target with respect to their geocentric

angles. At the proper time, the ferry is given a velocity impulse

into a transfer orbit which will bring it into position for the final

rendezvous maneuver.

III. Velocity penalty for maneuvers.

a. Equal Velocities, In-plane Maneuvers. Suppose that the inter-

ceptor (ferry) and the target vehicles have the same velocity mag-

nitude but different directions; Figure 2.

Target V

FIGURE 2. In-plane Maneuver

For small a,

(III.1) A V = a V.

For a typical velocity of 25,000 ft/sec, the velocity increment re-

quired per degree separation of the paths would be of the order

7r

(III.2) A V = _-_ X 25 X 10 _ = 436 ft/sec.

This is a costly maneuver as measured in units of required

velocity impulse.
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Apogee

Impulse

Target

FIGURE 3. Two-impulse Maneuver

b. Two-impulse Maneuvers. From Figure 3,

(III.3) V_= V_- V_o- 2V1V0cosa.

The velocity penalty for the plane change is

(III.4) A V----V1 + V2- V0,

for small a, such that sin a _ a, (III.3) and (III.4) yield

(III.5) A V - V1 Vo 2
Ol .

2(Y0- y_)

EXAMPLE. Typical numbers at apogee are V1 = 10 X 103ft/sec,

V2 -- 15 X 103, V0 = 25 X 103ft/sec. Ifa = 5.7 °, then A V _ 83 ft/sec.

Thus the two-impulse maneuver is less costly than the previous

case. The economy partly comes from the fact that the velocity

impulse can correct the interceptor's speed at the same time that

its orbital plane is shifted.

c. Dog-leg h4hneuvers. Dog-leg maneuvers during thrusting may

also be used during ascent or transfer trajectories to effect an orbital

plane shift. Thrust is made in the transverse direction by tilting the

rocket thrust by an angle 6 from the vehicle's flight path. Let

A V-- required increment of velocity.

It can be demonstrated that if y <<20, then for _ held constant,

FIGURE 4. Dog-leg Maneuvers
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y AV
(III.6) -- = a = -- _.

EXAMPLE. If Xo= 10 × 103ft/sec, AV-- 15 × 103ft/sec, one finds

that a = 1.55.

Thus the dog-leg maneuver can change the angle of the trajectory

plane on the same order as the rocket motor gimbel angle used,
and with minor penalty on the forward acceleration.

IV. Ascent.
a. General Direct Ascent. The rendezvous window is defined as

the interval of time on the launch pad during which a rendezvous

ascent can be made without an "excess" fuel penalty.

It has been established that Hohmann-type transfers require

minimum energy (see dashed line in Figure 5). So�t-rendezvous is

the situation in which the speed and orbit direction are the same

for both the interceptor and target vehicles. A Hohmann-type

transfer can be used if the target is at AL at interceptor launch

(ahead of insertion point). The intercept takes place at As.

Burning

VL

AR

BL

.L

FIGURE 5. Transfer Orbits

BR

Orbit
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The general cases occur for the target at either BL (leading) or

CL (lagging) with the intercept accomplished at the intersection

points BR or CR, respectively.

One can investigate the maximum spread in angle between initial

points BL and CL, which determine the allowable launch window,

with a restriction on the available A V capability of the interceptor.

Suppose that the total vehicle thrust capability is

(IV.l) VL A- _ VR = 27,000 ft/sec.

One can show that the launch window shown in Figure 6 is - 7.4

to 6.1 ° or roughly 13 °, which corresponds to about 3 minutes for

typical orbits. If the thrust capability is increased to 3 × 104ft/sec,
the launch window increases to about 15 minutes. It is thus seen

that the launch window is very sensitive to the total vehicle

capability.

218 ° Target Orbit

78o

FIGURE 6. Launch Windows

b. Indirect Ascent Schemes. Parking orbits can be employed to

extend the launch windows from the order of minutes to hours.

Suppose, as shown in Figure 7, that the inclination of the target's

orbital plane is only slightly larger than the latitude iL of the launch

site. Further, suppose that the interceptor is launched in a close

orbit. That is, only a small angle change is required for rendezvous.

Let A i denote the required difference in the inclination of the

orbital plane. It can be demonstrated that

sin iL COSi0 -- sin Ai
(IV.2) cos _ =

cos iL sin io
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o_

_ -_/_ _ Earth

,• J 1 _ !

Equator

FmURE 7. Nearly In-plane Launches

EXAMPLE. If iL = 28 ° (Cape Kennedy)

io Ai 0

Target
Orbit

30 ° 2° 32.6 °

30.4 2.4 36.0

31.0 3.O 39.5

Next consider two types of transfer orbits:

Case a. Transfer apogee at target height (Gemini Program

Maneuver). A chasing orbit is obtained by launching a transfer

such that the apogee is tangent to the target's orbit. Thus the

ferry or interceptor gains on the target during each revolution

until a constellation is attained for which a single small impulse is

sufficient to effect the rendezvous.

Let:

0 = angular difference,

v = number of revolutions required to overcome 0 deficiency.

One can verify that

(IV.3)

(IV.4)

_r 4 0

r 3 360v'

AV 1 0

Vo 3 360v'
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Ferry

Launch

-- _ ChasingOrbit

FIGURE 8.Hohmann-type Transfer

where Vo is the orbital speed.

EXAMPLE. If

0 = 20 °,

r = 4260,

then Ar---- 315. This cannot be accomplished in one revolution be-

cause hr is greater than target altitude, here considered to be 300

miles. Therefore, let v = 2, and then Ar= 158 miles and A V

= 213 ft/sec.

Case b. Parking orbit. For an intermediary parking orbit, (IV.3)
is modified to

Ar 2 0
(IV.5)

r 3 360(v -- 3/4)"

Thus the basic technique in the use of chasing or parking orbits

is to launch the ferry any time it is ready during the time interval

the launch site is close to the orbital plane of the target, Figure 7.

From this figure and the table relating Ai and 0, this may be in

the interval of several successive orbital passes. Any geocentric

angular deficiency that the ferry may have is made up by use of

the chasing or parking orbit. It is seen that the holding back for
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subsequent addition of a rendezvous velocity increment h VR allows

this type rendezvous to be made at substantially the same charac-

teristic velocity increment as would be involved in a direct ascent

rendezvous. These indirect schemes provide for launch windows up

to 3-5 hours, instead of minutes.

Orbit

/

Target Orbit

FIGURE 9. Parking Orbit

V. Terminal phase. Terminal phase starts when ferry is about

50 miles from the target.

Two types of terminal maneuvers are usually considered.

(i) Proportional navigation: maintain line-of-sight fixed in inertial

space; or, maintain zero angular rate.

(ii) Orbital mechanics: compute coast orbits of target and ferry

to determine if they intersect. If no intersection, compute required

change in ferry orbit to produce orbit intersection.

a. Terminal Guidance. The terminal guidance equations for a

variety of assumed models are given Tables 1 and 2. Explanation
of these tables and much other information can be found in: J. C.

Houbolt, Problems and potentialities of space rendezvous, Astro-
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nautica Acta, Volume VII, Fasc. 5-6, 1961. As an example, consider

the equations in rotating rectangular coordinates for a model having

a spherical earth, circular target orbit, "zero-order" gravity. The

equations of motion are

T,
- 260y-

m'

(V.1) _, + 260x - 3602y Ty
m

Z+Jz- Tz
m

Assume no thrust, T, = Ty = Tz = 0. Then the solutions to (V.1)

are

(V.2)

(V.3)

x= +(  x0+0o. 
--2 (3y°--2_) sin_t-2y°c°swt'60

y= (4y0---2_)+ (--3y0+2_)Cos60t+_sin60t,

(V.4) z = al sin 60t+bl cos 60t,

where x0, x0, Y0, :Yo are the initial conditions.

The general relative motion seen by the ferry in these coordinates

is shown in Figure 10. The ellipse is centered near the target and

has the following parameters:

v = -- 320 + 660yo,

xo=xo+2y°,
60

XO

(V.5) y_ = 4yo- 2--,

a= 2b,

b: [ (__)2 + (3yo-2_-_)21

1/2
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Y

FmURE 10. Apparent Target Motion

Suppose that v = Yc = 0; this implies that

(V.6) Xo = 2O_yo,

which is the condition for which the orbital period of the transfer

orbit is equal to that of the target orbit.
If

xo = 2_y0,

(V.7) o_Xo
Y0= 2'

we have the situation illustrated in Figure 11, in which the ellipse

is centered right at the target.

If the target is itself in elliptical motion, it can be shown that

the same form of terminal equations apply to the relative motion.

FIGURE 11. Target on Center
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b. Proportional Navigation. Let R be the line-of-sight between

the station and the vehicle. For proportional navigation, an intercept

occurs if the direction of the line of sight R in Figure 12 is held

inertially fixed in space. One can produce this state of affairs by

accelerating the ferry sidewise in the direction of apparent motion

of the space station until the space station has no perceptible side-

wise motion as viewed against the fixed stars from the ferry. If

sidewise motion should reappear, it can be eliminated by a repetition

of this maneuver. Other than that, any acceleration of the ferry

for completing the rendezvous should be along R.

Space.

Ferry

FIGURE 12. Proportional Navigation

First one must accelerate the ferry along R until it is actually

approaching the space station. That is, R is negative. Ideally, one

would now apply a constant acceleration a away from the space

station. If a is chosen to satisfy

(V.8) R 2= 2aR

for the initial values of R and R, then (V.8) will continue to hold

by the laws of mechanics, and the ferry will come to rest just at

the instant of contact with the space station.

In practice, one may not know R and R initially to this degree

of accuracy, or a may be smaller than can be conveniently main-

tained by the braking rockets of the ferry. Then the braking is

done by an off-on procedure illustrated in Figure 13. The lines

marked al and a2 are ideal approaches with fixed accelerations al

and a2; al is less than a2 and both are very small. The line for al

is called the off line, and that for as the on line. One coasts until

it appears the on line has been reached (since this need not be

exact, approximate determinations of R and R will suffice). Then

a thrust is applied toward the space station, producing an accelera-

tion a3 greater than a2. This acceleration is maintained until the

off line is reached, when the thrust is cut off and coasting is re-
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R

Off Line
al

¢x2

Start

On Line

R

FIGURE 13. Off-on Braking

sumed. This is repeated, as shown in Figure 13 until the ferry is

close to the space station and nearly at rest relative to it, and one

is ready for docking.

c. Two Impulse Terminal Scheme. This is also called the "orbital

mechanics scheme." In this scheme, an aiming impulse AVx is first

given to direct the ferry on an interception course, and then a

correcting impulse Av2 is given at rendezvous to prevent a forcible

collision (see Figure 14).

\ /
AV 2 _ f

J

FIGURE 14. Orbital Mechanics

Let _/2_ be the period of the target and tr be the time interval

required to effect a rendezvous. Figure 15 displays the results for

the aiming angle _ and the velocity parameter _. If the space station

is behind the ferry by a distance x0, then one fires a rocket to
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J

1.7

0.8
180o

90 °

30°

P
0.1 0.2 0

.... /,

0.1 0.5 1.0

FIGURE 15. Velocity Parameter and Angle

produce a velocity increment

(V.9) Av = _Xo

in the direction 0, where 0 and 5 are to be read from Figure 15,

determining p by the relation

60

(V.10) p = _ tr (tr in seconds).

EXAMPLE. For an altitude h = 200 miles, consider that there is

a distance of 5000 feet and a desire to rendezvous in 10 minutes.

For this altitude, _ = 0.00114, so that Av = 5.78 and p = 0.109 by

(V.9) and (V.10). Then by Figure 15, we read/_ = 1.6 and 0 = 35 °.

So a velocity increment of 9.1 ft/sec, directed 35 ° below the line

of sight is called for. (We interpret "below" as toward the earth's

center.) If the ferry were 5000 ft in front of the space station, it

would be given an impulse of 9.1 ft/sec backward and upward 35 °.

VI. Mission analysis. Mission analysis is used for booster design,

or specifying the rocket thrust capabilities. As an example of mission

design, consider a comparison of two types of lunar mission profiles:

(i) direct ascent;

(ii) direct ascent with rendezvous in parking orbit about moon.

a. Basic Rocket Equations. The basic rocket equation can be
written as

(VI.1) mo _ K = e ('_)/"
m

where m0 is the initial mass, m is the mass remaining after a velocity

increment Av (in a practical case, gravity losses may occur so that

the actual velocity increment is less than Av), and u = Ig, where
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Payload Booster

mb

FIGURE 16. Booster with Payload

I is the specific impulse of the rocket (u is approximately the exhaust

velocity of the gases in the rocket exhaust).

Consider the vehicle configuration of Figure 16. By (VI.1)

(VI.2) mp+ mb _ K,
mp _ _m b

where emb---- burn out weight of booster.
Solve ibr mb tO get

K--1
(VI.3) mb - 1 - tK mp = rmp.

The required total weight is then

(1 - _)K
(VI.4) mr= mp d- mb-- 1- _K rnp = Rmp.

If it is required that a given velocity increment Av be attained,
one determines K from (VI.1), and then (VI.4) will show the initial

weight of booster plus payload to give this increment of velocity

to the payload.
b. Direct Ascent to Moon and Return. The path to be followed

is shown in Figure 17. The configuration of the vehicle is shown
me

Me

FIGURE 17. Direct Ascent Orbits

/

/
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M_

FIGURE 18. Direct Ascent Configuration
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in Figure 18, where m_ is the mass of the capsule intended for

Earth reentry, and m, is the mass of supplies to be taken to the

moon.

After the entire vehicle, with mass Me, has been placed in an

escape orbit directed toward the moon:

(i) Use m3 to land on the moon; hv3 is the required velocity

increment including gravity losses.

(ii) From the moon's surface, launch rn_ to Earth reentry by

means of m4; Av4 is the velocity increment, including gravity losses

and reserves.

We write:

(VI.5) mA = R4m_,

(VI.6) Me = Rs(mA --[-m,),

where R4 and R3 would be determined by (VI.4). To determine

the appropriate K's, values of Av must be given. Values used in

a typical mission study were

Av3 = 10,640 ft/sec,

AV4 = 10,330 ft/sec.

c. Lunar Rendezvous. The path to be followed is shown in Figure

19. The configuration of the vehicle is shown in Figure 20, where

mc and m, are as before.

After the entire vehicle, with mass me, has been placed in an

escape orbit directed toward the moon:

(i) Use part of m12 to put the vehicle in a circular orbit about

the moon; Avl is the required velocity increment.

(ii) Detach mL, leaving m_ and the rest of m12 in orbit.
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mc

_ AVd

me

FIGURE 19. Lunar Rendezvous Orbits

me

mL , m12

mL

_lmsl md_

FIGURE 20. Lunar Rendezvous Configuration

(iii) Use md to descend to the moon; AVd is the required velocity

increment, including gravity losses.

(iv) Use ma to rendezvous with mc and m12; Ava is the required

velocity increment, including gravity losses, rendezvous maneuvers,
and reserves.

(v) Use the rest of m12 to return mc to Earth reentry; AV2 is the

velocity increment required.

We write:

(VI.7) m_ + mf = R_mt,

(VI.8) mL = Rd (m, + m_ -t- mr).

To get m12, we denote by mg the fuel required to produce AV_.
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Then

m12 -- mg-_- m e

m12 -- mg -_- mc + m L

= e _2/u = K2,

----e _/u: K1.

Solving these for m12 gives

KIK2- 1
(VI.9) m12 - me -k

1 - _KIK2

Finally

(VI.10) me = me + mL -_- m12.

Values used in a typical mission study were:

Ava = 6800 ft/sec,

AD d _- 6800 ft/sec,

Av2 = 3530 ft/sec,

A/) 1 = 3840 ft/sec.

299

d. Comparison of Missions. For a direct ascent, we take _3 -- 0.15,

and e4 = 0.12. With the listed velocity increments, this gives

(VI.11) Me -= 10m_ + 2.7m,.

For lunar rendezvous, we take e12 = 0.12, and ca = _d= 0.15. With

the listed velocity increments, this gives

(VI.12) me = 2.4mc _ 9.0mf-_ 3.8m,

(VI.13) mL = 5.5m/_- 2.4m,.

If we take mc = 13,000 lb, mf = 3500 lb, and m, = 0 (for the early

lunar missions) we find

Me = 130,000 lbs,

me = 64,000,

mL = 19,000.

These figures indicate the economy of a lunar rendezvous mission

as compared to a direct ascent.
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VII. Rendezvous in interplanetary transfer. Rendezvous concepts

and paths for interplanetary flights are similar to those already

discussed. However, special escape and capture maneuvers are

needed in the near vicinity of the departure and destination planets.

Let Vp be the velocity around the sun needed by a space ship
at earth distance from the sun if it is to reach the destination

planet. If Ve is the earth's heliocentric velocity then the space

ship must depart from earth with a relative velocity of V® given by

(VII.l) V® = Vp- V,.

We note that Ve = 97,700 fps.

If the ship starts from a circular "parking" orbit around the

earth with velocity V0, it must have this increased to a velocity

VE given by

(VII.2) _E = 217o2+ V_

if it is to proceed to a large distance from the earth with a residual

relati_/e velocity of V®. It will proceed along a hyperbolic path,

as shown in Figure 21.

Parking Orbit

/thrust { (Earth_ _V 97 700

/ escape_/ e = '

FIGURE 21. Hyperbolic Escape

The proper place at which to increase velocity from V0 to VE

can be determined by noting that

VEVo
(VII.3) tan¢ - V_

At the destination planet a reverse procedure can be used.

Another type of escape maneuver uses a low thrust engine. By

using continuous thrust for a long time, the space ship will traverse

an ever ascending spiral until it escapes earth and takes up an
elliptic orbit around the sun.
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FastOrbit

FIGURE 22.OrbitstoMass

The equationsgoverningthe motion during escape {by either

method) are definedby the Lagrangian

(VII.4) L = T - V = ½ m (p2 + r2_2) _ g/r,

and

(VII.5) _W = Fr_r+ FernS.

These yield the equations of motion for a thrusting escape:

T T-- --cos_, r0"-f- 21'b = sin_,J'-rt}2+r T m m

where T is thrust, m is vehicle mass, and _ is the angle between
the thrust vector and the local vertical.

The transfer path of minimum fuel expenditure is the so-called
Hohmann transfer orbit; this is the dashed half ellipse shown in

Figure 22. With a Hohmann orbit, the elapsed time can be quite

large. There are faster orbits, of which one is shown in Figure 22.

However, for them fuel expenditure can be excessive.
The characteristics for a Hohmann orbit and a selected fast orbit

are given in Table 3.

TASLE 3. Orbit Characteristics

Mars Stay Time Travel Time Total Time _ A V

Hohmann 460 days 520 days 980 days 36,600 ft/sec

Fast Orbit 30 290 320 76,000

AERONAUTICAL RESEARCH ASSOCIATES OF PRINCETON, INC.

PRINCETON, NEW JERSEY
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condition
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of no penetration, 10
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connective and radiative transfer, 96
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consistent approximation, 191

continuity, 103, 107

equation, 4, 98
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inclination, 176, 257
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240, 241
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linear, 224, 227

multiple, 252

nonlinear restoring force, 227
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Delaunay variables, 167

dependence, domain of, 25

detached shock, 38

diffusion, 140

coefficient, 99

velocity, 99

dimensional analysis, 210
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dissipation function, 9
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electron concentration, 122

ellipse,Keplerian, 262
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equation, 8, 99
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equilibrium
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multiple-scale, 208
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small perturbation theory for, 20

transonic equation for two-

dimensional steady, 22

fluids mechanics, 208

fluid motion
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Eulerian description of, 2, 45

Lagrangian description of, 2, 45
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Fourier
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Law, 7

laws, Navier-Stokes and, 73, 75,

76, 79, 86, 92
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effect, 128
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frozen
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gas constant, 99
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assumption, 111

H-theorem, Boltzmann's, 64

Hamiltonian, 243, 257

systems, 232
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transfer, 40, 52

Reynolds analogy of, 52
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Hohmann orbit, 301
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hydrodynamic equations, 67
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approximation, 12, 15
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202, 203, 204
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cyclv, 229, 230

lines, 32
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Lindstedt

method of, 216, 234, 270

procedure, 244
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damping, 224, 227
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multi-step method(s), 182, 183,

184, 185

system, first-order, 188

linearized equations, 103

Lipschitz condition, 180, 181

local

MaxweUian, 63
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long period terms, 173

longitude of apogee, 266

low Reynolds number approxima-

tions, 40

lumped constituents, 100
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Dog-leg, 280
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mass

action, law of, 101

fraction, 98

matching, 259

Mathieu's Equation, 234, 235
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Maxwell

molecule, 78

transfer equations, 67-70

Maxwellian

distribution function, 59, 62

local, 63

mean

free path, 56

motions, equations for, 42

mechanical system, 209

mechanics

celestial, 208, 209

fluid, 208

mission profiles, lunar, 295

mission velocity increments, 297,298

mixed-secular term, 213, 221,224

model, BGK, equation, 85, 88, 89, 92

modified method of averaging, 207

molecular chaos, 65

Mollier diagram, 135

moment equation (s)

of Boltzmann equation, 76

Grad's thirteen, 76

method, 76

momentum, 103, 107

equation, 8, 99
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direct ascent to, and return, 296
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and Fourier laws, 73, 75, 76, 79, 86, 92
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relation, 7

Newtonian approximation, 40, 124
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chemistry, 130

flow, 97

noninertial, system, 270

nonlinear restoring force, 227

nonuniform

expansion, 213, 238

representation, 213

nonuniformity, 256

with respect to initial parameter, 254

nozzle expansions, 128

Nuseelt number, 144

oblique shock relations, 36

one-dimensional

steady shock problem, 74

unsteady flow, 23

opaque gas, 112

optimal system of coordinates, 47

orbit

chasing, 283

circular parking, 300

Hohmann, 301

parking, 279, 284

orbital mechanics, 285

order classes, 238

oscillations

beating, 233

bounded, 208, 224, 249

Du_ng's equation, modulated

harmonic, 241

subharmonic, 244

resonant, 233

subharmonic, 248, 251

Oseen equation for steady flows, 44

outer variable, 213

parameter, aerodynamic, 265



308

parking orbit (s), 279, 284
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singular, 207, 218

problem, 213, 214
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Prandtl number, 52, 139
Prandtl-Grauert

flow, 32

rule, 21
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Riemann invariants, 25
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motion, 260
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shock(s)

conditions, 34

curved, 38
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strength parameter, 38
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wave, 28, 95, 114, 115, 120

short period terms, 170
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single step method, 180, 182

singular perturbations, 207,213, 214,
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skin friction, 40

slip flow regime, 58
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equation of, 99
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stretched variable, 216
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component, 251
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successive over-relaxation method, 202

superorbital speeds, 115

surface catalysis, 141
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telegraph equation, 107
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guidance equations, 285

maneuvers, 285
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coefficient of conductivity, 7
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transfer

equations, Maxwell, 67-70
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